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FOREWORD

A symposium on Flight Flutter Testing, jointly
sponsored by the Aircraft Industries Association and
the Air Force Office of Scientific Research, was held
15-16 May, 1958 at the Department of Commerce
auditorium, Washington, D.C. This volume contains
the 22 technical papers presented during the sympos-
ium and comments from a panel discussion on the
future of flight flutter testing.

The idea for the symposium was first conceived
at the 1957 spring meeting of the ARTC/E-4 Flutter
Research Panel of the Aircraft Industries Associa-
tion. Since its establishment in 1946 the four basic
functions of this panel have been: to evaluate current
effort in flutter research and formulate researchpro-
posals to satisfy industry requirements; to provide
an interchange of information on current flutterprob-
lems and methods of solution; to recommend spon-
sorship of special projects and symposia as required
to meet specific needs in flutter research; and to
evaluate periodically civil and military requirements
for flutter prevention and prepare industry's recom-
mendations where needed.

At the 1957 spring meeting of this panel, the
necessity for increased dependence on flight flutter
testing of prototype aircraft was generally advocated
to insure the existence of adequate flutter margins
for new airborne vehicles. In the past several years
most major aircraft companies have been involved
in flight flutter testing, and though the techniques
employed have varied widely, it is probably fair to
say that present methods are generally inadequate
for predicting some types of flutter. Thus the E-4

Flutter Research Panel suggested that a symposium
be held in the hope that papers presented would stim-
ulate research effort in the field, and aid the develop-
ment of improved and safer testing techniques,

On behalf of the AircraftIndustries Association,
and my fellow members of the ARTC/E-4 Flutter
Research Panel, I would like to express appreciation
to the Air Force Office of Scientific Research for the
fine cooperation extended to us during the preparation
of this symposium. Mr. E, Haynes (Deputy Director of
Aeronautical Sciences), Colonel John Stone (Inspector
General) and Mrs, Audria P, Burroughs (Chief, Pres-
entations Division) of the Air Force Office of Scien-
tific Research provided immeasurable assistance and
cooperation during all phases of the symposium, in~
cluding the publishing of these proceedings., Colonel
F. N. Moyers, Vice Commander of AFOSR, presented
the very stimulating welcoming address.

Especially 1T would like to thank Professor Holt
Ashley of the Massachusetts Institute of Technology,
Mr. Douglas Michel of the Bureau of Aeronautics,
Mr. Walter J. Mykytow of Wright Air Development
Center and Mr, I. E, Garrick of the NACA Langley
Aeronautical Laboratory for their invaluable assist-
ance as session chairmen,

Eugene F. Baird

Chairman

ARTC/E-4 Flutter Research Panel
Aircraft Industries Association
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INTRODUCTION

Col. F. N. Moyers — Vice Commander,
Air Force Office of Scientific Research

Mr. Baird, Members of the Symposium:

As co-sponsor of this symposium, the Com-
mander and Staff of the Air Force Office of Scientific
Research are pleased to welcome you. Today's meet-
ing, the first to treat flutter testing exclusively, has
been arranged by the Aircraft Industries Association
Flutter Research Panel and members of the AIA and
AFOSR.

In looking over the agenda of this symposium,
1 feel that it is scientifically very impressive and
surely meets the high quality standards established
by the AIA in the area of aeromechanics.

We believe that one of the most important jobs
to be done in research and development today is that
of insuring the adequate flow of research information.
To that end, we consider meetings such as this a
positive step in that they provide a vital link in the
channel of research communication. It is meetings
such as this that makes it possible totranslate usable
basic knowledge to the engineer who has the job of
applying this knowledge to the more effective hard-
ware ‘which we so urgently require in this age of
accelerated technology.

In speaking of research communication, I would
like to take this opportunity to say a few words con-
cerning our organization, the Air Force Office of
Scientific Research, We are a major activity of the
USAF Air Research and Development Command,

Our mission is that of fundamental, theoretical,
or experimental investigation to increase man's know-
ledge and understanding of the natural world and to
recognize the implications of new scientific knowledge
upon weapons systems concepts. Our capability to
carry out this mission is represented by scientists

throughout the free world working in universities, in
industry, in foundations, and in government research
agencies, under approximately 700 research contracts
awarded by our organization. We define our program
as one of exploratory research, It is that research
that provides answers to which there have been no
questions, It is research with a view toward adding
to the total of man's knowledge in areas of Air Force
interest. The product of this research provides
"capabilities" - - capabilities for providing new con-
cepts of weapons systems that may revolutionize the
art and science of aerial warfare,

Most of the AFOSR research projects are con-
ducted in universities although industry is certainly
not excluded, Hence, a considerable amount of grad-
uate students training results as a secondary benefit
of our research program. In view of the general
shortage of qualified technical personnel, our program
in this way has long-term advantages to universities,
industry, and the government,

During the past 15 years, we have witnessed a
remarkable increase in speed, power, altitude, range,
and complexity of aircraft. At low speeds, structures
were designed with sufficient rigidity topreclude most
aeroelastic phenomena. At the higher speeds we en-
counter today, designers have been faced with a wide
variety of problems which are Aeroelastic in origin,
Thermal effects due to kinetic heating have further
complicated these problems. It would appear that
the development of aerodynamie theory has been out-
stripped by practice. In many cases, theory is of
such importance that it is virtually impossible to
interpret test results without it.

In this regard, I would like to give you a few
examples of how AFOSR exploratory research, ini-



tiated in some cases as much as 6 years ago, are
contributing to the solution of design problems.

A simplified aerodynamic theory called the
"piston theory" was greatly extended in scope by
Dr. Ashley and his coworkers at MIT. The theory
permits a large reduction in the labor required in
aeroelastic stability calculations and has been used
in connection with the design of practically every
surfaces, such as the Talos, Nike, Wizard, and in ad~
vance fighters like the F105.

At CIT, Dr. E. E. Sechler has been studying
the nature of panel flutter at {ransonic and supersonic
speeds, Some significant and interesting results have
been found. At supersonic speeds, within certain
limits, an increased in the initial deviation from flat-
ness was found to be beneficial to the prevention of
panel flutter, Dr. Sechler has evolved simplified
analyses for finite ratio panels which could set the
boundary limits for design and set standards for wind
tunnel and flight test methods.

Dr. John Miles, UCLA, has compieted a com~
prehensive monograph on the application of theory of

perfect fluid flow to the prediction of the aerodynamic
forces that act on thin wings and slender bodies as
a result of small, unsteady motions in supersonic
flight. This work is of value both for the further
development of the theory and in practical flutter and
stability analysis.

From these few examples you can see that re~
search is not at a standstill, however, much work re-

‘mains to be done. The Air Force of the future is in

the laboratories of foday. It is our job to integrate
the results of this fundamental research and insure
the greatest possible utilization of the researchprod-
uct, It is our objective that this symposium will
serve to bring the scientist and engineer up to date on
old problems, acquaint them with new problems, pro-
vide an opportunity to exchange ideas and information
on testing procedures, and, in general to promote
progress in the field.

I would like to thank each of you and your re-
spective organizations for participating in this meet-
ing. I hope that you will have a profitable symposium

and an enjoyable stay in Washington,



A THEORY OF FLIGHT FLUTTER TESTING

Erik Mollg-Christensen — California Institute of Technology

-

Abstract

Flight flutter testing is considered as a method

for finding generalized aerodynamic forces. The co-
efficients determined from flight flutter tests are
used in flutter calculations, using a simple expansion
in frequency and Mach number,
procedure are discussed, and expressions for the
error in flutter prediction are given.
testing procedure are discussed.

The errors in the

Methods of

INTRODUCTION

This paper considers flutter testing and flight

flutter testing a part of flutter analysis., Very often
nowadays, tests which were originally intended as
proof tests or acceptance tests inadvertently became
exploration of the unknown. This situation will per-
sist until flutter analysis can be used with confidence,
to the extent that the accuracy of a flutter prediction
can be computed as part of the analysis.

Since this situation exists, one might as well

consider such tests as links in the flutter analysis,
and squeeze out as much information as possible
from the test results, rather than rest content with
say, flutter frequency, speed and Mach number as the
only result of a wind tunnel flutter test, which usually
cannot be repeated using the same model.

We shall, therefore, consider the equations of

motion on a wing vibrating in an airstream, examine
which quantities can be measured, which quantities
can be found from a simpler test, and attempt to as-
say the accuracy of data obtained from static, ground
vibration, flight vibration and flutter tests.

Finally, we shall look at the accuracy of a
flutter prediction, in terms of the precision of the
data used in the computation.

The Equations of Motion

We assume the wing to be perfectly elastic, and
assume the motion of the wing to be small, such that
the aerodynamic loads are proportional to some
linear integral-differential transform of the deflec-
tions.

This integro-differential dependence ofairloads
on deflection is proportiohal to dynamic pressure, but
may depend upon flight altitude, and depends upon
Mach number and frequency of oscillation.

The equation of motion can then be written:

z({x, y) = ffWindc(x, ylé&, n){w2m(.f, nalé, n o+
drea

F(E o + 4pU°D (&, m &y W[ ql& w ro s, b, M)
1 Wing
Area

D2(r, s; k, Mz(r, sldrds}dédn
where:

R, lz(x, yletetly

is the deflection of the wing at (x, y) at time t.

2710

is the frequency of vibration,
mix, y)

is the mass per unit wing area at (x, y).
clx, y|& m)

is the deflection at (x, y) due to a unit load applied
at (<. 7).



R, [Flx, y}ei""t]

is the force applied to the wing by shakers, or ground
supports.

DAS, m; b, W[ qls my v, s, k, WD (1, s, k, Malr, s)drds
1 ng .2

is the operator which yields the lift per unit area at
( & 7 ) divided by the dynamic pressure fora deflec-

tion amplitude distribution z(x, y) at Mach number M

. b
and reduced frequency '%— .

At zero airspeed and frequency, this is the equa-
tion for a ground static test, for zero airspeed only
it is the equation of a ground vibration test, and for
zero impressed force, it is the equation for flutter,
while the whole equation describes a flight vibration
test.

To be able to use the equation, one must rewrite
it using some kind of approximation. One can use an
approximation in natural modes, but that seemspoint-
less unless they are known precisely. Thealternative
is to use an approximation in discrete ordinates, or if
one is in a fancy mood, to use station functions, or an
approximation in terms of surface stresses.

We shall use an approximation in discrete or-
dinates, namely the deflections 7, at the points (x,,
¥,/ where v refers to the number of the point in some
kind of ordered sequence,

Equation 1 then becomes:
{z,} = [ep) m)]o’ (4] {2} + Lo, ] 1] (Fy) +

-;—pzﬁ lepllaygle, ) 1{z5} 2)
where ({9,,) is the matrix corresponding to the
linear ‘integro-differential operator which yields the
lift distribution., [#] is a diagonal matrixof integra-
tion weights, it has been lumped with the [q,,(%, #)]
in the last term on the right hand side.

The equation for flutter statesthatthe determin-
ant of (2) must vanish for {F,} = 0 in order to ob-
tain a non-trivial solution:

DB | (-1 + Flelml 4] + Lo lellatk, W] = 0 (3)

We shall now proceed to write down the equa-
tions for a set of tests, and to examine the rate of
change of flutter speed with changes in the elements
of the flutter determinant., The latter will enable us
to assess the first order error in the flutter predic-
tion due to errors in wing parameters and aerody-
namic coefficients.

The Equation for a Set of Tests
If one repeats a flight vibration test N times,
one obtains N equations like equation (1), which can

be written as a single equation. If all these tests
are performed at the same reduced frequency k and

4

Mach number ‘M, the combined equation becomes es-
pecially simple, and takes on the form:

[z ] = [C ] (4 114 ] [Z ] fZJz] +
un ppd My d Ly d 18y 1 1%, 4
@)

Loy 4,108, (2] By ) ¢

le,nd [Fyy) + Lol Lok 1)) (2,105 pUQJn\]

where we have included a structural damping term
with [d] asthe matrix of damping coefficients. n is
the test number, so z,, is the deflection amplitude at
(x, vy, in the n'th test, «», is the frequency, and
(; 2" is the dynamic pressure in the n'th test.
2F u) n

After having performed a set of N tests, where
all but N columns of one of the matrices in Equation
(4) are either measured in the tests or known from
previous tests or analysis, it is possible to compute
the unknown columns. As examples, we shall con-
sider a set of static tests, a set of ground vibration
tests, a set of flutter tests and a set of flight vibra-
tion tests.

A set of static tests should obey the equation:
(2,01 = e} [Fyy]
which can be inverted to yield:
-1
o] = (2,0} [Fyp]

-1
where ([r, ] is

{7
[ -1 - vn
Fupl [IN]

Fi, is the cofactor of the element F, in the
transpose of [(F, ] The first order error in

{c W] due to error in the measurement of 7, and

[F,,] can be evaluated as follows:

Bloy,) = lac,,) = [z, (R, " +
1 AFl - 3[FL,]
sz - ’ +
lzn] 22 IFIZ( T (Fy,) + |Fl 3, | Yrs

= %g ] bz, ¢ +§§ lKrsl oF, ¢

If the errors are given in terms of standard
deviations, °F,.; and O o the standard deviation
in the element ¢, is:

2 .2 2
UC,uv . % E Krs 72,5

The coefficients £;; can be seen to be large
when the determinant || is small, i.e. when one of
the columns or rows in the loading matrix is nearly

a linear combination of the other columns or rows.

+ 53 gy 2
75 trsF

The Equation for a Set of Ground Vibration Tests
For a set of ground vibration tests, one ob-
tains: .
gyl = Lol ) Iml {2 ] + fe) 10F,, T +

eyl (2] (200 e, ]



Equating real parts:

Relz, ] = (o) [1,]) [m]Re [z,,] lan] + lelRelF ]

or ) = W) o] HRe (s, -

yY
-1 -1

lc 1Re [F, ) (o] 7 [Rez,,)

and we see that if the determinants of Ic,] and

[z,,]  are small, the first order errors maybecome

large. However, in the flutter equation, [»] only

occurs in the combination:

le, ) ] my)]

and therefore only this combination is of interest:

(oo U1 Im,] = (Relzyy) = lepy] ReFyy)) (6] [Rez,y,1

which shows that these errors in [z#n] and [F,,]
are really important. The matrix of first order er-
rors of the left hand side is [A] , where:

[A] = ([BRez,,) = [c,,] [OReF,, 1) [l " TRez,,)

- -1
b ([Rez) = ey} ReF o, 1 (AL iRez, ] 7Y

- -1
o [62) A Rz, ] )

The error will therefore be proportional to the in-
verse square of the determinant of [Rez, ] ; this
determinant should be maximized by arranging the
test such that the columns of the determinant are
orthogonal if possible, This means that each test
should be performed at'a natural frequency.

Equationfor a Set of Flight Vibration Tests or Flutter
Tests

The information obtainable from a set of flight
vibration tests or flutter tests which cannot be obtained
from tests where there are no aerodynamic forces
are, of course, the aerodynamic forces.

Since the aerodynamic coefficients depend upon
Mach number, M, and reduced frequency, k, the tests
must either be performed at constant M and k, or
one must somehow approximate this dependence.

One can for example use a Taylor series ex-
pansion of [g,,(%, #] inkand M aboutsome value
of M, M..s and zero reduced frequency. One obtains:

(9,060 #)] =

@ @ o
2 2 — g,k W)
r=0 s=o W wS M .

4 o= Mref

(M~ Hppp)TES

o r! sl

[

Instead of expanding in power of (M-Myes), one can
expand in powers pf (M2-1) for transonic Mach num-
bers and (M2-1)""2 for supersonic Mach numbers.

As an engineering approximation one would only
use the first and zero order terms.

LR I
T 1| \aw" 2es Tw(k M)

The equation for a set of tests is then Eq. (4),
solving for the aerodynamic terms, one obtains:

- [A("' s)]
v
¥ - ”rej

le g i) Mg,k #)] =

(o) Ut,) S5 WD S Mgty = ppp)” o

{{z,,]1 - lepl [ [m} 411z, ] [‘wZJ + 1 {d] (4] {2} {w,] *
-1 -1
(F MU p2) ] T ley,]
This set of equations may be insufficient to de~
termine  [q,,(k, #)] ‘However, some of the
T ik, o) are not very important as far as the

flutter speed is concerned, the zero order terms in k
can be determined by wind tunnel tests on stationary
but deformed wings (tied down), others can again be
guessed at, at least, from linearized aerodynamic
theory. The purpose of a flight vibration test or a
flutter test is then to determine the remaining aero-
dynamic coefficients, Without going into a discussion
of which aerodynamic coefficients are to be chosenas
those which neither theory nor wind tunnel static tests
can yield, we shall consider the precision obtainable
in ¢ (e M) when it is determined from tests.

The term which is most liable to magnify the
errors is the errors in the inverse of [z,,] . The

value of [zW]-1 is

[2],] -
_ﬂ_z[z]l

ol

|
When differentiating to evaluate the error, one obtains
an expression with |z|® in the denominator. To
minimize errors, one must try to make |z| as large
as possible, i.e., the columns in [zw] should be as
different as possible. Vibration is natural modes
only will go far towards the accomplishment of pre~
cision,

Errors in Flutter Prediction due to Errors in Struc-
tural, Mass and Aerodynamic Parameters

Before the obtainable precision in experimental
determination of structural, mass and aerodynamic
information can be meaningful in terms of resulting
accuracy in flutter prediction, we have to analyze
the sensitivity of a flutter point to such errors.

Flutter occurs whenever the determinant (Eq.
(3)) vanishes:

1 2
Dlk, M,E-pl/ P ey My, di,...., d

q“.--.., qNN. 611,...-, C”N) = 0

Vary one of the parameters, which we shall call P,

Both the real and imaginary parts of the flutter de-
terminant will then change, and k and —%—plji’ must



then be changed to compensate, such as to maintain
the value of the flutter determinant at zeroat constant
M. Instead of changing k and ip 2 , kand M can

1 2 Py
be changed, at constant 5p,2 , or , and k can be

changed only, at constant M and U,

We shall only consider changes in k and -%-p 2
at constant M.

To maintain flutter for a change in P, one must
have:

.3 1 )
Re(AD) = Ré(—— AP) + Rel—3 ) yATpU*) « Re(—) ybk = ©
oP a(gp[p/ 2 Ok
oD 1 1 5 oD
Im{AD)= Im{~—AP) + Im{ 1. )MA(sz ) o+ I”‘(g)MAk = .0
3(‘2'pU )

Solving for A(%pU %)

and Ak, one obtains:

M = const.
3}
—Ap )
Algpu®) Im{(a_.__PAP !
20 7y T 30 3
Im{( T )=}
B('ipUQ)
3D 3D
Im{{—0P) T }
U=pU®)
(Bk)y = 2
3D, D
Im ) }
L2
o 2/)[] )

where the bars denote the complex conjugate and the
derivative with respect to k is taken at constant M

and _}py"’ , and the derivative with respect to ip[]Q
2 2

is taken at constant k and M.

It is, of course, complicated to evaluate these
derivatives, but it seems to be necessary for finding
the sensitivity of a flutter point to parameter changes.
With modern computers it may, however, be possible.

A rough.knowledge of the precision of a flutter
prediction will always be useful; one mustkeep firmly
in mind, however, that the estimate of precision is in
terms of a given numerical approximation, and can
give no information about the remainder term of the
numerical approximation.

In practice, when a flutter point proves very in-
sensitive to parameter changes, it should not be al-
lowed to cause unalleviated elation, since then it will
take a major design change to move the flutter point
out of the flight envelope of the airplane, for example.

Conclusion

A viewpoint and a method of approach to flight
flutter testing and to flutter in general has been out-

6

lined. 1t is realized that only the practising flutter
analyst can choose the method of analysis and the
tests to be performed, knowing the limitations of his
facilities and his personnel.

The method which has been outlined is clearly
impractical; however, if someof its elements are used,
or if nothing else, its viewpoint is adopted, the paper
will have accomplished its purpose.
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A GENERAL AERODYNAMIC APPROACH TO THE PROBLEM OF
DECAYING OR GROWING VIBRATIONS OF THIN, FLEXIBLE
WINGS WITH SUPERSONIC LEADING & TRAILING EDGES AND

NO SIDE EDGES

R. W. Warner — NACA, Ames Laboratory,
Moffett Field, California

Abstract

The type of solution presented in this paper has
extreme significance for the problem of flight flutter
testing since the flutter characteristics of a flight
vehicle could be checked analytically without actually
penetrating the flutter region. For such a study in-
dicial aerodynamic influence coefficients have several
advantages., The indicial nature of the coefficients
(responses to step function) makes them more readily
applicable to decaying or growing motion than sinu-
soidal coefficients. Inaddition, aerodynamic influence
coefficients can be applied to any plan form (within
the limitations of the aerodynamic theory) and to any
mode shape.

For the reasons stated above, indicial aerody-
namic influence coefficients have been evaluated from
potential theory for a thin, flexible wing with super-
sonic leading and trailing edges only. - The analysis
is based on the use of small surface areas in which
the downwash is assumed uniform. Within this lim-
itation, the results are exact except for the restric-
tion of linearized theory. Theareasarenot restricted
either to square boxes or Mach boxes. A given area
may be any rectangle or square which may or may
not be cut by the Mach forecone, and any area can
be used anywhere in the forecone without loss of
accuracy.

INTRODUCTION

The purpose of this paper is to describe a
feasible method for calculation of the aerodynamic
forces due to arbitrary time-dependent downwash on
flexible wings., Such aerodynamic forces have several
important ‘applications. They can provde the aero-

dynamic forcing terms in gust problems. They can
also give the aerodynamic terms due to decaying or
growing vibrations that occur in the equations of mo-
tion for problems of gust response, airplane dynamic
stability, and the approach to a flutter boundary. The
latter application has significance for flight flutter
testing since the flutter characteristics of a flight
vehicle could be compared with analysis without ac~
tual penetration of the flutter region.

As with Pines and other authors (References 1
through 4), the present method is based on dividing
the wing plan form into a number ofdiscrete areas or
boxes. In each of these areas the downwash is as~
sumed to be uniform. In this paper a simplified
approach is used to find the pressure at any point on
the wing due to the downwash oneacharea in its Mach
forecone. A variety of area shapes is permitted. By
means of these so-called "aerodynamic influence co-
efficients," arbitrary downwash distributions can be
achieved for various plan forms. The present ap-
proach differs from the earlier methods primarily
in its use of indicial aerodynamic influence coeffi-
cients. The adjective "indicial" means that the uni-
form downwash is applied suddenly to the area and
maintained constant thereafter. The principal ad-
vantage of the indicial function is that it is a single
function of time which can be superposed to give
pressure for arbitrary time-dependent downwash, If
sinusoidal functions were used to produce such down-
wash, both their real and imaginary parts would have
to be superposed.

The Indicial Aerodynainic Influence Coefficient for
the Fundamental Area

In Figure 1, a general plan form with super-

sonic edges is outlined in dotted lines, with the flow
pa§sing over it at velocity V_. A grid of small areas
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GENERAL SUPERSONIC-EDGED PLAN FORM WITH
SUPERIMPOSED GRID
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Figure 1. General Supersonic-Edged Plan Form with
Superimposed Grid

of uniform downwash is shown with solid lines and
gives rise to a serrated leading edge in the approx-
imation, The portions of those areas which can affect
the pressure at a typical point (x, y) lie within the
Mach forecone from that point and are shown shaded
in Figure 1. Examples of these so-called "Mach
forecone" areas are the polygons withthree, four, five,
and six sides, as numbered in Figure 1,

It has been found that aerodynamic influence
coefficients for all the various polygons can be de-
rived from the coefficient formula for a so-called
"fundamental area" of uniform downwash. The fun-
damental area used herein consists of that portion
of a representative quadrant in the plane of the wing
(see Figure 2) which lies between the origin of the
quadrant and one forward Mach line from (x,y). Thus
the fundamental area is the shaded triangle in Figure
2. The point (x, y), where pressure is found, is taken
to be in the plane of the wing and the triangle. The
x', y' coordinates shown in Figure 2 are used only to
locate the right-angle corner of the fundamental area

FUNDAMENTAL AREA

QUADRANT

Figure 2. Fundamental Area

relative to the point (x, y), and these coordinates are
prominent in the results which follow.

The exact indicial aerodynamic influence coef-
ficients for such a fundamental area have been found

by linearized theory. The result for y g 1\14, where

M is the free-stream Mach number, is presented in
{
222% in the right-hand

column, with corresponding tlme zones indicated in the
left-hand column. In Figure 3, A P(t) is the indicial
pressure difference between the upper and lower sur-
faces of the wing at point (x, y}, considered positive
when it acts upward; W is the amount of uniform in-
dicial downwash due to wing motion or gust velocity,
positive downward; c is the speed of sound in the un-
disturbed medium; t is time; 2 _is the density of the
undisturbed fluid; and 2 is YM2-1, One point to be
noted in Figure 3 is the elementary nature of the
It should also be stated that if - y 2 —I\!/I-’
then the first two time zones are replaced by a single
AP(t)

Figure 3 as the quantity { ——

functions.

time zone for which { } is zero; and the other

two zones are unaffected.

INDICIAL. AERODYNAMIC INFLUENCE COEFFICIENT
FOR FUNDAMENTAL AREA IF y'/X'S I/M
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Figure 3. Indicial Aerodynamic Influence Coefficient
for Fundamental Area If y'/x' = 1/M

Application of the Indicial Aerodynamic Influence
Coefficient for the Fundamental Area

The present calculations are based on applica-
tion of the indicial aerodynamic influence coefficient
for the fundamental area. The Mach box grid, such
as that shown in Figure 4 for M = 1.6, is used. For
this grid, introduced by Ta Li (References 2 and 3),
the dimensions are A normal to the stream and A
parallel to the stream. The pressure is evaluated
at the centroid of each box as, for example, at the
apex of the Mach forecone shown in Figure 4, Hence,
all Mach forecone areas of uniform downwash are
triangles, like 10 and 47, or rectangles, like 14 and
39. As can be seen, the portion of the plan form



TYPICAL MACH BOX GRID

Figure 4. Typical Mach Box Grid for General Super-
sonic- Edged Plan Form

shown in Figure 4 has a rather general shape. The
x' and y' axes, which define the right-angle corners
of fundamental areas, originate at the point where
pressure is sought,

Although the fundamental area shown in Figure
2 can be applied to more complicated Mach forecone
areas than are shown in Figure 4, its application to
areas such as 10, 47, 14, and 39 is representative.
The pressure difference at the Mach forecone apex
due to uniform indicial downwash on Mach forecone
area 10 is found by substituting x' = -f,ii , ¥ = 0into

the coefficient formula of Figure 3 to account for the
lower half of 10 in Figure 4 and doubling the result
to account for the upper half. For the triangular
(or fundamental) area 47, it is only necessary to sub-

Eoy

stitute the values x' = , ¥ =1}\-for the single
2

right-angle corner. For Mach forecone area 14 (see
Figures 4 and 5) one starts with the coefficient for

DEVELOPMENT OF THE COEFFICIENT FOR AREA 14

AREA 14”7

Figure 5. Development of the Coefficient for Area 14

- without modification.

the black triangle in step I of Figure 5. In a process
of superposition, one then subtracts the coefficients
for the shaded triangle in step II and the shaded tri-
angle in step III as indicated by the minus signs and
the braces in Figure 5. One thenadds the shaded tri-
angle in step IV because this coefficient was sub-
tracted twice, once each in steps II and TH. These
steps leave only the coefficient for the black rectangle
of step IV, which is the lower half of area 14; and this
result is doubled to account for the upper half. Since

- all the fundamental areas used in these examples have

e BIII’ the coefficient formula of Figure 3 is used
It is essential, however, to
modify the coefficient in the manner previously de-
1
M

The ‘indicial influence coefficients for the four
Mach forecone areas shown shaded in Figure 4 are
plotted in Figure 6 against a dimensionless time,

1
scribed when 3 >
x'

c;\t . The upper curve gives the pressure difference

at the apex of the Mach forecone in Figure 4 due to
uniform indicial downwash on Mach forecone area
10. This is the only curve having a non-zero initial
time zone since 10 is the only area containing the
point at which pressure is found. The other three
curves define the pressure differences at that point
due to Mach forecone areas 47, 14, and 39 as indicated
in Figure 6. The principal point to be noted is the
segmented nature of the curves,

If the transverse motion of the centroid of each
basic-grid box were considered to be a degree of
freedom in the equations of motion, results such as
those shown here would have tobe used in the Duhamel
superposition integral for the analysis of decaying or
growing oscillations. The form of this integral, the
large number of degrees of freedom required, and
the irregular time histories of the indicial coefficients
would cause extreme difficulties in high-speed ma-
chine computation. If an-analog machine were used,

TYPICAL INDICIAL AERODYNAMIC
INFLUENCE GOEFFICIENTS
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Figure 6. Typical Indicial Aerodynamic Influence
Coefficients



it would be essential to approximate these coefficients
by a different set of exponentials for each of their
segments. Although the exponential approximation
would also facilitate digital computation, the use of
a digital machine for such calculations would still
require an extremely large memory. However, these
indicial aerodynamic influence coefficients can be
used relatively easily to evaluate generalized indicial
forces. With these forces, relatively few degrees
of freedom are required. In addition, a generalized
indicial force is likely to be suifficiently smooth to
be subject to approximation by one set of exponentials
over its entire time history.

To determine the feasibility of applying indicial
coefficients to the calculation of generalized indicial
forces, a simple rigid-body example, for which exact
theoretical results are known, will be presented.
Consider a rigid, supersonic-edged delfa wing at a
Mach number of 1.2. The wing is shown in Figure 7
with dashed lines and has a leading-edge sweep of 24°,
The sweep has no bearing on the exact result for the
delta wing but does influence the selection of boxes
in the approximation. The wing is covered with 96
Mach boxes for M = 1.2, the box length normal to the
stream being A and that parallel to the stream being
%\. for the trailing-edge boxes and A\ for the rest,
as indicated in Figure 7. The uniform pressure as-
sumed over the trailing-edge boxes is evaluated at
the trailing edge. For any pair of supersonic lead-
ing edges, the placing of the apex on the leading edge
of the foremost box in the Mach box system has the
principal advantage of minimizing the extent to which
the boxes carry assumed constant pressure across
the apex Mach lines, where the pressure distribution
changes rapidly. Such an arrangementalsoalternates
the carry-over of high pressure difference and low
pressure difference, as with boxes 71 and 70, re-
spectively, in Figure 7. The rule of thumb for dis-
carding boxes along the leading edges is simply that
boxes conforming to the pattern of the basic grid are
included only if their centroids lie on the plan form
of the delta wing.

SUPERSONIG-EDGED DELTA WING
WITH MACH BOX GRID FOR M=1.2
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Figure 7. Supersonic-Edged Delta Wing with Mach
Box Grid for M = 1.2
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It should be noted that the number of chordwise
boxes at the maximum chord, namely eight, coin-
cides with the minimum number recommended by
Zartarian (Reference 5) for oscillatory functions. As
he states, more boxes would be required ifthe chord-
wise deformation shape had more than one half-wave,

The generalized indicial force found for the
delta wing just described is ch’, that is, lift due to

indicial pitching velocity, q, about the apex. In Figure
8 the lift is nondimensionalized in the usual fashion,
and g is nondimensionalized with respect to the flow
speed V, and the maximum chord c,. In the present
approximation, the uniform downwash on each boxdue
to q is evaluated at the centroid of each box except
for the trailing-edge boxes, where the trailing edge
is the reference for downwash as well as pressure.
The time is made dimensionless in this case by the
flow speed V and the maximum chord cg.

LIFT DUE TO INDICIAL PITCHING OF A
SUPERSONIC-EDGED DELTA WING ABOUT ITS APEX
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Figure 8, Lift Due to Indicial Pitching of a Supersonic-
Edged Delta Wing About Its Apex

Figure 8 contains three curves: the exact the-
oretical result taken from Reference 6, the curve
derived from the indicial aerodynamic influence co-
efficients, and an exponential approximation based on
points taken from the curve determined by the influ-
ence coefficients. The irregularities in the curve
derived from the coefficients are the result of using
a finite number of boxes. The exponential approxi-
mation is in error relative to the exact result by a
maximum of nearly 2 percent,

The question arises as to whether such a good
exponential curve fitting could have been accom-
plished if the exact result had not been known in ad-
vance. Fortunately, a large part of the curve-fitting
procedure is quite general and does not require spe~
cific knowledge of the exact result. The first step
is to select from the function determined by the
indicial coefficients a set of points upon which the
exponential approximation is to be based. In the
present case, the points chosen were those whose
abscissas lie halfway between the peaks of the ser-



rated curve in Figure 8, with the valley nearest time
zero excluded. (The initial time zone will be dis-

cussed later.) In addition, the initial (Z—t = 0) and
steady-state (% = 6\) points of the serrated curve
0

were used. The valley points were chosen, rather
than peak or mean values, because one would expect
the exact function to be smaller than the function based
on the coefficients even if the exact function were not
known, This results from the fact that the total area
of the boxes is approximately 1 percent greater than
the actual delta-wing area. Furthermore, the evalua-
tion of the downwash right at the trailing edge gives
somewhat too high a uniform downwash over the half
boxes on the trailing edge. Such a procedure for the
selection of points upon which to base the exponential
approximation in all but the earliest time region would
be expected to apply to more complicated plan forms
and mode shapes.

The second step in the exponential curve fitting
is the application of judgment as to the nature of the
indicial function in the earliest time region. This
step is aided by the general knowledge that all the
various supersonic indicial functions calculated for
specific plan forms and mode shapes in References 6
and 7 have one or more inflection points near time
zero, However, some of the functions have one point
of inflection without a dip, and some have two points
of inflection with a dip. Thus the rejection of the
first valley in the serrated curve of Figure 8 and the
subsequent selection of the exponential approximation
with only an indistinguishable dip, essentially at time
zero, required knowledge of the exact result for the
present case. For more general indicial functions,
then, the decision as to whether to ignore the dip may
give rise to an error as large as 10 percent in the
earliest time region. This potential error can be
reduced, of course, by developing usable points closer
to time zero. The principal means of doing this is
the use of a larger number of boxes, which would
improve accuracy over the entire time span.

Once the points to approximate have been se-~
lected and the behavior near time zero has been es~
timated, the third step is the actual exponential ap~
proximation. Two exponentials and a constant term
are used for the example in Figure 8. The constant
term is the steady-state value derived from the in-
dicial coefficients. It can be adjusted according to
the relative areas of the boxes and the actual wing if
desired. One of the exponentials is adjusted to fit
the points to be approximated at the higher values of
time. The other exponential, having a larger ex-~
ponent, is used to match the desired properties near
time zero and damp out at larger times. Such a pro-
cedure will probably suffice for more general indicial
functions than that of Figure 8.

As a check on the adequacy of the particular
exponential approximation in Figure 8, a frequency
response is computed over the limited range of re-

wC
duced frequency, -55— , for which the necessary tabu-

lated functions z}re generally available, The exact
s
results for Cy, qlreal) and Cy, q(imag)’ based on an

integral evaluated in reference 8 in terms of functions
tabulated in Reference 9, are plotted against — in

Figure 9. The results of introducing the exponential
approximation of Figure 8 in the Duhamel integral and
specializing for sinusoidal motion are also shown in
Figure 9. The maximum percentage discrepancy be-
tween the approximate and the exact results occurs

at the very small values of Cy, near Lo
av

’
q(imag)
2.0. Elsewhere, the largest errors are around 3 per-
cent, which is considered quite good,

COMPARISON OF EXACT AND APPROXIMATE
SINUSOIDAL RESULTS
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Figure 9. Comparison of Exact and Approximate
Sinusoidal Results

CONCLUSION

In view of the foregoing results and discussion,
it appears that the application of generalized indicial
forces, derived from indicial aerodynamic influence
coefficients, to the problem of predicting decay rates
in flight flutter testing will be feasible.
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Abstract

This paper describes a new testing technique
which can be applied in determining the damping co-
efficient of the critical vibration modes of anairplane
in flight. The damping coefficient can be determined
in several different ways from the same data using
different features of a modified response curve which
implies the possibility of checking one value against
the other.

The method introduces the effect of sweep
rate in the driving system. This effect on the fre-
quency response curve of the critical vibration mode
and its various characteristics are used in the deter-
mination of damping coefficient. A theoretical exam-
ination is made of these characteristics for single
degree of freedom systems.

INTRODUCTION

The main objective of flight flutter tests is to
demonstrate that an airplane is flutter safe in its de-
signed range of speed and altitude. An airplane can
be considered as flutter safe if all structural vibra-
tion modes exceed a minimum requirement in damp-
ing. The minimum requirement is a matter of ex-
perience and may be agreed upon between airfirame
manufacturer and customer. A certain safety margin
from the critical speed must be observed. The air-
plane cannot be flown and tested at the critical speed
unless artificial damping of predictable magnitude
can be applied. This is one reason why flight test
data cannot be immediately compared with data from
flutter analysis which mainly deals with the critical
speed or zero damping condition. A comparison is

only possible with derived data. But even an indirect
comparison is very useful in order to insure that the
data from analysis are reliable. Before flight test,
the various structural modes of an airplane are de-
terminedin a ground shake test where only structural
damping is present. During flight, additional aerody-
namic forces are present which vary with speed and
altitude. They affect the frequency and damping of the
modes.

In flight vibration tests, the various modes of
vibration have to be excited by means of some con-
trollable source of energy and the variation of the
response with: speed and altitude has to be measured.

The method of excitation and the methodof eval-
uation of the response curves are closely related.
There are different types of exciters:

Mechanical exciter with a rotating single out-
of-balance weight or with a pair of out-of-
balance weights coupled with each other in this
way that one component of the force is can-
celled. The balance weight can be preloaded by
a spring in order to obtain a desired function
of the exciting force versus frequency.

Aerodynamic exciter can be any flap in the free
airstream placed in the proper position, e.g.
any control surface or additional flaps. The
real force or moment of excitation cannot be
determined due to the interaction between ex-
citer and airplane. This type of exciter may
be mandatory if no place for a mechanical ex-
citer is available,

By using a small explosive charge suitably lo-

cated it is possible to excite transient response
in all the various modes of vibration.
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The mechanical and the aerodynamic exciters
allow the application of sinusoidal input function with
step by step variable frequency. The response func-
tion is the so-called ''frequency response curve'.
The test procedure is to excite the system at a fixed
and constant frequency until a steady-state amplitude

-is achieved. This procedure has to be repeated for

each frequency and each flight condition. It is ex-
tremely time-consuming especially when the fre-
quency interval has to be chosen very small in case
of a response function with a high maximum re-
sponse and a steep slope of the response function.

Both exciters can also be used for application
of a variable input frequency. The input frequency
function versus time may be described by a poly-
nomial, The simplest polynomial is the straight line,
It implies a new variable, the slope of the straight
line or the "sweep rate" of the frequency variation.
The sweep rate can be made proportional to the fre-
quency, but this method does not give more informa-~
tion (Applied by H. G. S. Peacock, Gloster Aircraft
Co., Reference 1),

Any variation of the input frequency makes the
response function dependent on the time, We may
call it a "time response curve" in order to distin-
guish it from the "frequency response curve' obtained
by applying a constant input frequency.

The method with variable frequency excitation
requires considerably less time than the method with
constant driving frequency. The entire frequency
range of interest can be covered in one sweep up and
down for each flight condition.

The excitation with a short sharp impulse gives
a transient response function followed by a decay. It
is theoretically possible to excite transient response
in all the various modes of vibration.

Common to all response functions obtained in
flight test is the superimposition of the response to
random . input which tends to mask the response curve,
It is impossible in flight test to avoid the random in-
put. The different response functions are more or
less sensitive with respect to random input. Especi-
ally sensitive is the transient response to a sharp
impulse. The frequency spectrum of a sharp impulse
covers theoretically a wide range of input frequencies
which can be viewed as the sum of sinusoidal waves,
Therefore, the response of a linear system to a tran-
sient input can be viewed as its response to the sum of
sinusoidal waves contained in the transient input. The
procedure for converting transient data from the time
to the frequency domain is based on the use of the
Fourier integral. It has to be taken separately for
the input and output function. This method requires
steady state condition in some finite time which is
quite difficult to obtain in flight test.

The frequency spectrum of the random input

which is not contained in the integral of the input
function may have a pretty high magnitude at certain
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frequencies compared with the magnitude of the input
which is contained in the integral. 1In this case the
frequency response curve will be in error at these
frequencies.

The determination of damping coefficient from
transient response data must be approached withcare.
It is difficult to determine that no other input forcing
function has been applied during the time the deter-
mination is being made, Further confusion can arise
if the energy put into one mode is transferred slowly
to some more complex mode. This can give rise to
apparent rapid decays and high damping simply dueto
unfortunate choice of either the locationordirection of
forcing function.

The decay of the free oscillation is also very
sensitive to random input. If the damping of the sys-
tem is low, a very small impulse is necessary to
excite the system and vary the amplitude of the re~
sponse, Also the presence of other structural modes
and even the motion of the rigid airplane make the
evaluation of the decay quite questionable,

While, as stated earlier, the purpose of inflight
vibration testing was to gain information about the
damping characteristics of the various modes of inter-
est, several other ground rules were used to arrive

_at the procedure to be described more fully,

These ground rules were:

(1) That the method requires as small a time
as possible to gather the data. This is to
relieve the problems of very high speed
low altitude testing.

(2) The method’ requires an absolute minimum
of rework to the airplane. The surfaces in
question in one case were all blind struc-
tures, very thin and were not amenable to
additional weight without danger of adding
a new unknown problem.

(3) If possible, the method should not require
an absolute value of input force since this
would nearly always present a more diffi-
cult problem.

{4) The methoddid not necessarily requireafirm
theoretical foundation, preferably it should
have,

(5) The method should be fairly simple to apply
so that the flight program would not be
unduly impeded by lack of information.

(6) The method should arrive at least a rea-
sonable prediction as to the safety for the
next several steps in approaching a flutter
boundary.



Response to Variable Frequency Input

Before discussing the testing technique witha
variable frequency input function, we need some in~-
formation about the effect of the sweep rate on the
response.

Existing references indicate neglect of the ef-
fect of the sweep rate or assume constant correction.
It can be shown that this assumption is misleading
in cases of low damping which we are mostly con-
cerned with,

Some information we get from Frank M. Lewis’
report about "Vibration During Acceleration Through
a Critical Speed" (Reference 2). We extended this
work to the method covered in the paper. We will
now discuss the response of a linear single degree
of freedom system to a forcing function of variable
frequency with constant sweep rate. The case of
constant driving frequency is included as boundary
case with zero sweep rate.

For better understanding of the curves the
symbols used may be explained. The differential
equation for a single degree of freedom system with
variable frequency excitation and with unit input can
be expressed as:

y + 2ny + pzy = sin (mot + mltz)

where:

y = response for unit input

p= wao = system frequency in radians per
second

fo = system frequency in cycles per
second

m, = input frequency at t = 0 in ra-
dians per second |

2m1 = 27f"' = rate of change of input frequency
in radians per second squared

£’ = rate of change of input frequency
in cycles per second squared

— my i . .

my =—== = dimensionless rate of change of

p2 477f02 input frequency, called "sweep
rate"
2n . s

Yy = 7 = damping coefficient

fi = variable input frequency in cycles
per second

fm = jnput frequency at maximum re-

sponse in cycles per second

The argument of the forcing function on the
right side is a quadratic function of time. The first
derivative of the argument with respect to time is
the input frequency.

27f, m_ + 2m.,t
i 0

1

where m, = input frequency at t = 0 in radians
per second

and m, = rate of change of input frequency,

called "sweep rate', in radians per
second squared

Setting my = 0, we get the classical case of constant
input frequency. In all cases mp> 0 we may set the
initial frequency mg, = 0 and in cases mj € 0 we may
set mg, = 2p.

Figure 1 shows the frequency response curve
obtained by applying a constant frequency forcing
function (ml = 0) compared with two response curves
to variable frequency excitation. The damping coef-
ficient in all three cases is ¥ = 0.1. The response

-curves for mj # 0 are "pseudo frequency response

curves', because the frequency depends on the time.

The first curve (mq = 0) depends only on the
damping > and the input frequency. Some features
of the curve depend only on ¥ . The maximum re-
sponse — the amplitude ratio R — is proportional
1/ v for small damping. The proportionality factor
is the ratio of the maximum response to the response
at zero input frequency (static condition)., The static
response is difficult to measure in flight fest. An-
other feature of the response curve is the width of
the response peak at 0,707R. It is well known that the
width at this response (3 db down point) is equal to
the damping 7. We know that the maximum response
occurs at the frequency ratio "one'", if the damping
is small, and that the maximum response shifts to
lower frequency ratios if the damping is high.

RESPONSE AMPLITUDE OF A SINGLE DEGREE
OF FREEDOM SYSTEM VS. FREQUENCY

10 CONSTANT FREQUENCY
ﬁl =0
8
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6 [— ;= 0.001 \ ;= 0.001
4
7=0.
2
\
(o}
[s) 0.5 1.0 1.5 20

INPUT i’REQ. / SYSTEM FREQ. - fi/fo
Figure 1. Response Amplitude of a Single Degree of
Freedom System Versus Frequency
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In case of variable frequency excitation we have
one additional new variable in the input frequency
function, the slope of the frequency function, called
the "sweep rate" f' or my (dimensionless). The
sweep rate causes a delay in the response. In case of
increasing frequency the maximum response occurs
at higher frequency and in case of decreasing fre-
quency at lower frequency. The maximum response
is in both cases lower than in the case of zero sweep
rate, because the excited system has not enough time
to build up higher amplitudes.

Figure 2 shows how the maximum response and
the frequency at the maximum response depend on
the damping 7Y of the excited system and on the
sweep rate of the input function. The up or down
going lines are lines of constant sweep rate. In the
middle is the line for zero sweep rate (classical
case), on the right for positive, and on the left for
negative sweep rates. The lines going from the left
to the right are lines of constant damping ¥ . The
higher the sweep rate is,the higher is the effect on
the maximum response and the frequency shift at
maximum response, This dependency allows us to
pick up more information from the response curves
to variable input frequency then from the classical
response curve, Applying a positive and a negative
sweep rate of same magnitude in two test runs under
same conditions, we can measure a total frequency
shift which depends on the damping 7 and the sweep
rate El'

Before we discuss the crossplottings along the
lines of constant damping and constant sweep rate,
let's look at the phase angle of the response for the
same three cases. Figure 3 shows the phase angle
vs. frequency. From the classical case (m1 = 0)
we know that the phase angle starts with zero degree
at frequency ratio "one" and approaches 180° for very
high frequencies. The slope of the phase angle at the
maximum response is proportional 1/ ¥ for small
damping. The phase angle of the response to vari-
able frequency input is also affected by the sweep

MAXIMUM RESPONSE R VS. FREQUENCY
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Figure 2. Maximum Response Versus Frequency
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Figure 3. Phase Angle of a Single Degree of Freedom
System Versus Frequency

rate. The phase angle at the maximum response
shifts to higher values for increasing frequency and
to lower values for decreasing frequency.

The slope of the phase angle curve at the maxi-
mum response is lower than that for zerosweep rate,
The maximum slope which occurs somewhat later is
nearly the same as that for zero sweep rate., Figure
4 shows the phase angle at the maximum response
vs. frequency for different damping values ¥ ,

and different sweep rates my. Also here we
can state that the effect of the sweep rate is increas-
ing with decreasing > and that the shift of the phase
angle is opposite for positive and negative sweep
rates. The magnitude of the total phase angle shift
can again be utilized in determining the damping.

The following figures are crossplottings of the
different features vs. sweep rate mj and vs. damp-
ing v .

In FiguE 5, we see the maximum reponse R vs.
sweep rate mj for different ¥ . The effect of the

PHASE ANGLE @ AT MAXIMUM RESPONSE
VS. FREQUENCY
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Figure 4. Phase Angle at Maximum Response
Versus Frequency




sweep rate is very little in case of high damping 7,
but remarkable in case of low damping. In all cases
but zero sweep rate we getafinite maximum response,
evenfor ¥ =0, '

MAXIMUM RESPONSE R VS.
SWEEP RATE 10,

100

50 \1{

20 o
A —
10

(o] 1 2 3 4
103,

Figure 5. Maximum Response Versus Sweep Rate

This finding is very important for practical
flight flutter tests. The method with variable fre-
quency excitation applied with caution is not more
dangerous than a straight flight with always present
random excitation,

The next plotting (Figure 6) is more suitable
for practical application. It shows the maximum
response vs. damping for different sweep rates. Us-
ing the maximum response for determining the damp-
ing coefficient ¥ a preliminary study of the pro-
portionality or magnification factor is necessary. It
can be assumed as a first approximation that this
factor is constant ina certain speed and altitude range.
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Figure 6. Maximum Response Versus Damping

In the following Figure 7 the frequency shift of
the maximum response is plotted vs, sweep rate. The
maximum response shifts to higher frequencies in
case of increasing frequency and to lower frequencies
for decreasing frequency. The frequency shift is re-
markable and well measurable in case of low damping.
This plotting is very useful in determining the fre-
quency and the damping of the excited system. In
order to get a well measurable frequency shift it is
advisable to apply a positive and a negative sweep
rate of same magnitude under the same flight condi-
tion. The frequency shift is independent on the mag-
nitude ' of the input function; it depends only on the
damping and the sweep rate. Therefore, the damping
can_ be determined directly without knowledge of the
real input function and the magnification factor,
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Figure 7. Frequency Shift of Maximum
Response Versus Sweep Rate

Crossplottings of the frequency shift vs damping
¥ for different sweep ratesarepresented in Figure 8.
It shows the effect of the sweep rate and the damping
on the frequency shift,
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Figure 8 Frequency Shift of Maximum
Response Versus Damping
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The next plotting (Figure 9) is very convenient
for a quick estimation of the damping from the total
frequency shift between the positive and negative
sweep rate of the same magnitude. Allthree plottings
of the frequency shift indicate that the accuracy of
reading is better in case of low damping than of high
damping.

IFFERENCE OF FREQ. SHIFT OF MAX. RESPONSE

A%" VS DAMPING ¥ FOR POS. & NEG. SWEEP RATE
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Figure 9. Difference of Frequency Shift of Maximum
Response Versus Damping for Positive and
Negative Sweep Rate

Another feature of the response function which
can be used for direct reading of the damping coef-
ficient without knowledge of the input function is the
width of the response curve at 0.707R (Figures 10
and 11). The width w = ¥ for the classical case of
zero sweep rate mj = 0 and small damping. The
effect of the sweep rate on the width w is quite re-
markable at low damping. Neglecting the effect of
the sweep rate can be dangerous.

WIDTH OF THE RESPONSE CURVE W
AT 0.707 R VS. SWEEP RATE 10°m,
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Figure 10. Width of the Response Curve at
0.707R Versus Sweep Rate

Figure 12 represents the crossplotting of the
phase angle at maximum response o vs, sweep rate,
The phase angle is more sensitive with respect to
variation of the input frequency than the frequency at
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Figure 11. Width of the Response Curve at
0.707R Versus Damping
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Figure 12. Phase Angle at Maximum Response
Versus Sweep Rate

maximum response, but the character of the curves
is quite similar to those in Figure 7.

The crossplotting of the phase angle vs. damping
(Figure 13) can be compared with the plotting (Figure
8): Irequency shift vs, damping. The phase angle
shift in case of low damping is remarkable.

The difference of the phase angle A« at max-
imum response for positive and negative sweep rate
is shown in the next Figure 14. This plotting is useful
for a quick estimation of the damping.

Finally, lets take a look at the increment of the
phase angle at maximum response. In Figure 15 the
slope of the phase angle o’ is plotted vs. sweep rate.
These curves look quite similar to those in Figure 5,
maximum response vs., sweep rate, The plotting of
the slope o' vs. damping (Figre 16) is similar to
Figure 6,
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Figure 13. Phase Angle at Maximum Response
Versus Damping
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Figure 15. Increment of Phase Angle at Maximum
Response Versus Sweep Rate
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Figure 16. Increment of Phase Angle at Maximum
Response Versus Damping

The phase angle and the slope of the phase angle
are pretty sensitive with respect to any random input,
Therefore, the data obtained from the phase angle
curve are less reliable than those obtained from the
response curve., Some experience is required injudg-
ing how to weigh each ofthefeatures. The possibility
to use quite a number of the features of the response
curve for determining the damping coefficient pro-
vides the opportunity of checking.

Summarizing, we can say that thenew variable,
the sweep rate, causes more variation inthe response
curve, The evaluation seems to be more difficult at
first sight, but with the knowledge of the dependence
of the different features on damping and sweep rate
we can determine the damping in different ways. We
can pick up more information from the response to
variable input frequency than from the frequency re-
sponse curve for zero sweep rate (ﬁl = 0).

DISCUSSION

A theoretical study ona single degree of freedom
system showed that the response to a forcing function
of variable frequency with constant rate of frequency
change depends on the sweep rate and the damping of
the system. The sweep rate causes a diminution of
the maximum response and a frequency shift of the
maximum response to higher or lower input frequen-
cies., Also, the phase angle between output and input
function and the slope of the phase angle function at
the maximum response vary with the sweep rate. The
width of the response curve is another feature which-
varies with the sweep rate. The variation of all the
features just mentioned is of such a magnitude,
especially in case of small system damping, that it
cannot be neglected. It can rather be an aid in deter-
mining the damping coefficient of the system if the
sweep rate is properly chosen and kept constant in
the frequency range of interest.

19



A new flight testing technique can be based on
the comparison of the measured response curve with
the response curve of a system with one degree of
freedom. The different features of the response
function which depend on the sweep rate of the input
function and the damping of the system allow the
determination of the damping coelfficient. Apractically

convenient sweep rate ﬁl = ﬁf—z lies in the range
° o

of 0.0005 to 0.0015. The sweep rate has to be constant
in order to avoid additional response to variation of
the sweep rate. The determination of the damping
coefficient from the different features provides the
possibility of checking one value against the other.

A BEAC study was made on a three degree of
freedom system with one predominant mode of small
damping. The amplitude of the input force was kept
constant and the varying frequency was controlled by
hand. Figure 17 shows a comparison of the frequency
shift of the maximum response of the three degree of
freedom system with thatof a single degree of freedom
system. The frequency shift curves plotted versus
rate. of change of input frequency show fairly good
agreement.

FREQ. SHIFT OF MAX. RESPONSE
VS. SWEEP RATE 10°W, FROM 3-DEGREE
OF FREEDOM BEAC STUDY
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Figure 17. Frequency Shift of Maximum Responses

Versus Sweep Rate from 3-Degree of Freedom
BEAC Study

Flight Test Results

We applied the new testing technique success-
fully on the F-104A and other airplanes. Here are a
few results. The tests indicated that there were no
satisfactory means of determining the exact input
forcing function. Only an indirect input functioncould
be applied through the yaw damper. Sothe yaw damper
deflection was used as an indication of the input
function. The bending and torsion moment at the fin
root was used as output. Any other measured and
recorded quantity which is closely related to the
structural mode of interest can be considered as an
output.

The time response function, output amplitude
divided by the input amplitude, canbe replotted versus
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input frequency, as shown in Figure 18, for increasing
and decreasing frequency. Most information used in
determining the damping coefficient can be picked up
from these response functions: the maximum re-
sponse, the frequency shift of the maximumresponse,
and the width of the response curve. The sweep rate
is taken from the frequency functionversustime. The
reciprocal of the maximum response 1/R is a good
indication of the damping, it increases withincreasing
damping and decreases with decreasing damping. The
damping coefficient determined by comparison of the
measured response curve with the response curve of
a system with one degree of freedom is plotted in
Figure 19 versus Mach number for constant altitude.
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Figure 18. Amplitude Ratio: Fin Root Torwion
Moment per Degree Yaw Damper Deflection
Versus Yaw Damper Frequency
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Figure 19. Damping Coefficient Versus Mach Number

The tests were repeated at different altitudes. The
minimum damping picked up from these plottings is
now plotted versus altitude. Figures 20 and 21 show
the minimum damping versus altitude for the F-104A
fin with aluminum and steel skin respectively. The
altitude for zerodamping canbe found by extrapolation.
Figure 22 shows a comparison of the flight test re-
sults with the analytical and wind tunnel results. A
fairly good agreement can be stated.
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Figure 22, Comparison of Flight Test Results with
the Analytical and Wind Tunnel Results

This was a brief survey about the application of
the testing technique with variable input frequency in
flight flutter tests because of the limited time avail-

able.
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ON THE PREDICTION OF CRITICAL FLUTTER CONDITIONS FROM
SUBCRITICAL RESPONSE DATA AND SOME RELATED

WIND-TUNNEL EXPERIENCE

J. C. Houbolt and A. G. Rainey — NACA, Langley Laboratory,
Langley Field, Virginia

Abstract

Methods of interpreting response measurements
which could be amenable to flight flutter testing pro-
cedures are being studied analytically and in the wind
tunnel. One suggested scheme, which requires evalu-
ation, is an iterative technique in which derivatives
obtained from subcritical response data are used to
indicate the approach to flutter. This paper considers
a simplification of this procedure by examining the
manner in which a single characteristic of the sub-
critical response behaves in relation to variations of
the density or dynamic pressure in the approach to
flutter. The use of this single parameter scheme is
examined for random excitation as well as for sin-
usoidal forcing. The feasibility of the method is
illustrated by several examples and the relative merits
of random and sinusoidal excitation are discussed.

INTRODUCTION

In this paper certain new slants aregivenon the
prediction of critical flutter conditionfrom subcritical
response data. Specifically, the technique considered
herein deals with the manner in which the forced
response behavior of an aeroelastic system varies
with changes in air density, while velocity is being
held essentially fixed. The impression is not to be
given that density considerations are necessarily new,
but rather the point of view is held that a further
examination of density effects may lead to a simple
index which may be useful in the prediction of flutter.
The motivation stems from the fact thatdensity appears
in a rather clean-cut fashion in the equations for
flutter, in contrast to the complex way in which vel-

ocity enters. Actually, the work started whenwe were
considering the application of ideas suggested by
Professor Mollgp-Christensen. The present work
evolved as a special consideration, and we thought it
to be of enough interest to merit separate attention.

In the first part of the paper an elementary but
rational analysis is given to show how the response
of a wing system might be expected to depend on air
density, for both the cases of sinusoidal and random
force input. A theoretical model illustrating the
technique of extrapolation to the flutter condition is
then considered. Then, inthe second partof the paper,
attention is focused on the experimental testing of the
approach by application to some wind-tunnel studies.

ANALYTICAL TREATMENT
Derivation of Extrapolation Equations

Let us consider an aeroelastic system which is
being excited into motion by either a sinusoidal shaker
or a sinusoidal gust, and then proceed to investigate
how the amplitude of the response, such asdeflection,
is dependent on the density of the air flow, To do this,
introduce the equation governing the motion of the
system as follows

Dw = p = o’ mw +0v°D w+F o +pF, (1)

L

where the equation may be interpreted either in dif-
ferential operator form or in matrix notation. The
operator D on the left hand side converts the surface
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deflection w into the total surface loading composed
of the inertia, aerodynamiec, and applied loadings on
the right hand side. The operator Dj, is complex and
is a function of Mach number and reduced frequency,
and when operating onthe deflection, leads to the aero-
dynamic loading; the shaker force Fg (considered to
be distributed over a small area to give an intensity)
and the gust loading » Fg are treated together for
convenience, and will be separated later. It is re-
marked that the sinusoidal gust conditionis introduced
because this condition yields a necessary part — the
transfer function — of the solution for response when
random inputs are involved; the density ,» is shown
specifically as an ingredient of the gust-loading so as
to keep the density in an explicit sense throughout
the analysis.

We now choose to make an approximate solution
of equation (1), since our essential result is arrived
at rather quickly, and will leave a more rigorous,
but lengthier, treatment which leads to the same re-~
sult to an appendix. The approximate solution is of
the Galerkin type and is made by assuming that the
deflection is expressed in terms of the modal shape
which occurs at flutter, thus

W o= 2w, (2)

where ay is a coefficient to be determined and wy is
the flutter deflection shape which satisfies the equation

2
- 2
Dwf = @, MW, + of Vg Dwaf (3)

which is simply equation (1) with the forcing terms
suppressed. Substitute equation (2) into (1), use equa-~
tion (3), multiply by wy and integrate over the wing
surface; the result leads to the following solution for
s |

Qs+pQg
4 7 2 2 )
2 2
wf—w M+prfAf-PvA

where Qg and Qg are in the nature of generalized
forces

Q = JwF S, Qg = fwagdS

and

2 , _
M= fmwf ds, Af —,fwawaidS, A= fwawadS (5)
In general, all of these generalized coefficients are
complex. At a velocity and frequency equal to the
values at flutter but at a subcritical value for density,
the value of a; is particularly significant and is

Qs-PpQg

a, =—— 6)
1 2
{ -
A Af Py = pl
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By inverting this equation and at the same time sep-
arating the effects of the shaker and gust terms, we
arrive at the final {woequations whichindicate how the
amplitude of wing deflection varies with density

shaker only (7a)

gust only ('7b)

These two equations suggest the basic linear extra-
polation-procedure of this paper. Thus, assume that
in-flight measurements of response are made accord-
ing to the following plan: we flyat a velocity near the
expected flutter speed (or at a velocity for which we
want to prove the aircraft safe), but take care to first
fly at a high altitude where the density is low. Then,
repeat the tests at successively lower altitudes. Then,
for tests utilizing a sinusoidal shaker input, we might
expect a plot of the reciprocal of the amplitude versus
density to form a straight line, which when extra-

1
polated to \';"1 = 0 yields the density that ought to pro-
. 1 1

duce flutlt_er. For the case of agust input,la |is plotted
1

against 7 for an expected linear relationship. In the
actual testing in a randomforce input environment, the
output spectrum of response will be found. But since
this spectrum is proportional fo the square of the
frequency response function for sinusoidal gust input,
we see that the reciprocal of the square root of the

output spectrum should be plotted against%, to arrive

at a condition consistent with that indicated by equation
(7b).

In applying equations {(7a) and (7b), itis implied
that the frequency of flutter is known. This is, of
course, not so; therefore the procedure to followis to
observe the amplitude-density behavior at several
frequencies until it becomes clear from the frequency
response plots what frequency is emerging as the
flutter frequency.

Example of Calculated Results

As a test of the possible range of applicability
of equations (7a) and (7b), response calculations were
made for a rectangular cantilever wing, and inter-
preted in accordance with these equations. The re-
sponse analysis was limitedto two degrees of freedom,
one bending and one torsion, and employed the aero-
dynamic coefficients for M = 0.8 in a strip fashion.
The frequency response functions obtained for ampli-
tude of torsional displacement at the wing tip are
shown in Figure 1, where the curves at the left are
for a sinusoidal gust input, whereas the curves at the
right are for a sinusoidal shaker input located at the
tip and at 10 percent chord position. The parameter
« is a ratio of structural mass to air mass, and
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therefore may be regarded as inversely proportional
to air density. It is seen that as the air density
increases (« decreasing) anevergrowing and sharper
peak develops at a frequency of 158 cps, thus suggest-
ing a frequency of flutter.

Application of equations (7) to the amplitude
values at this frequency gives the curves shown in

Figure 2. Extrapolation of the curves toé: 0 indi-

cates a flutter density ( » = 89) which agrees identi-
cally with that given by a conventional flutter analysis.
The very pronounced range of linearity is also to be
noted; in fact, using only the data at densities of 45
and 75 percent of the flutter density would give a
flutter prediction erring by only a few percent. It is
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significant to note also that the data point correspond-
ing to the 45 percent of critical density condition is
not a major peak in the frequency response curve for
this density. Thus, subecritical response data which
have not yet indicated peaks may still be useful.

The single data point and dashed curve shownfor
densities above the critical value are shownsimply as
a matter of interest to indicate that the theoretical
response calculations based on sinusoidal conditions
show a branch above the flutter condition as well as
below.

The main conclusion to be drawn from this
example is that the present technique for predicting
flutter appears quite promising. In the secondpart of
the paper we shall see how well it works when applied
to wind-tunnel studies.

Before looking at the experimental results, we
might make a few comments on the general applica~
bility of the density extrapolation technique. As with
other flutter extrapolation techniques, there will un-
doubtedly be cases where this scheme breaks down.
One possible example is that associated with wing
systems which are capable of a single degree of
freedom type flutter. Interestingly enough, equation
(1) can be used to demonstrate why. Up to now we
have tacitly assumed that unbounded response (a;—*
o) occurs when of - o becomes zero. It, of course,
also is possible for the response to become infinite
when A vanishes, and this may occur either ina
classical way for attached flow, or what is more
likely, when the flow becomes separated, such as in
stall flutter. The equation indicates that density is

unimportant in these instances, and this is actually
what the experiment shows. Thus, any flight investi-
gation should keep this possibility in mind.

EXPERIMENTAL RESULTS

The previous section concerned the analytical
background which has formed a guide to some wind-
tunnel experiments discussed in this section.

The 1linear extrapolation technique has been
examined experimentally for six cases involving ran-
dom excitation and for one case of sinusoidal excita-
tion. These various cases are illustrated in Figure
3, where a typical flutter boundary isusedto illustrate
the manner in which the flutter condition was ap-
proached. Geometric properties of the four semi-
span, cantilever mounted models are listed in Table
I. Model A was used to obtain three sets of sub-
critical response data — Case I and Case II at two
different stagnation pressures, but increasing velocity,
and Case III at constant velocity but increasing
density. Models Band C were tested at constant stag-
nation pressure and increasing velocity. ModelDwas
equipped with an electro-hydraulic shaker housed ina
tip tank, This model was examined for two cases —
Case I, random excitation at constant stagnation pres-
sure, and Case II, sinusoidal excitation at constant
velocity. In all of the cases examined the type of
flutter encountered was classical bending torsion
involving the coupling of well separated modes.

TYPICAL FLUTTER BOUNDARY SHOWING MANNER
OF APPROACH FOR VARIOUS CASES

DYNAMIC
PRESSURE

MODEL
A

— saiiatms

e 3]
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Figure 3. Typical Flutter Boundary Showing Manner of Approach for Various Cases
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TABLE I
GEOMETRIC PROPERTIES OF MODELS TESTED

Aspect Taper Sweep Airfoil
Model  Ratio Ratio atl1/4C Section
A 5 1.0 0° 6 percent Cir-
cular Arc
B 6 1.0 45° Flat Plate
C 1/17 45° NACA 65A004
D 3 1.0 0° NACA 65A010
Random Excitation response. These results are illustrated in Figure 4

The subcritical response data for Models A, B,
and C were obtained by recording the output of re-
sistance wire strain gage bridges mounied near the
root of the model, while the model was responding to
the normal turbulence in the wind-tunnel airstream.
The response data were recorded on magnetic tape
using frequency modulation amplifiers (ref. 1), After
completing the tunnel runs, thirty-second samples of
the tape records were analyzed using analog data
reduction equipment described in reference 1. The
peak values in the power spectra of strain response
were operated on to yield numbers proportional to
the reciprocal of the absolute magnitude of the strain

where the response magnitudes are shownas functions
of the ratio of the dynamic pressure at flutter to the
dynamic pressure associated with each point.

It should be pointed out that this form of pre-
sentation is not identical to that suggested by the
analysis. Some of the experiments were completed
before the analysis was available, and the form of
presentation chosen was such that all of the experi-
ments would be consistent within themselves. For
example, the velocity squared termhasbeen combined
with the density to form the dynamic pressure. This
is a necessary step in that some of the experiments
involved an approach to the flutter conditionprimarily

EXTRAPOLATION TO FLUTTER CONDITION FROM RANDOM EXCITATION
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Figure 4. Extrapolation to Flutter Condition from Random Excitation
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through increases in velocity. These variations in
velocity require the statement of additional qualifi-
cations to those already mentioned if one is to expect
a linear extrapolation of the response data. Perhaps
the most important of these additional assumptions
is that near the flutter condition, the air forces
associated with flutter do not vary rapidly with the
reduced frequency and Mach number.

An idea of the usefulness of these extrapolation
methods can be gained by examining Figure 4. A
reasonable degree of linearity of the response data is
indicated for all of the cases, when the dynamic pres-
sure is within about 20 percent of the critical value
and the extrapolation gives a good indication of the
flutter condition. The least encouraging results were
obtained for Model B which was poorly instrumented.
The strain gage bridges were mounted very near the
root and were about equally sensitive to bending or
torsional motions. The response data for the other
cases were taken from strain gages arranged such
that they were sensitive primarily totorsional strains.
It might be mentioned that the results shown for the
third case of Model A indicate a linear relation to
lower values of dynamic pressure than most of the
other cases. This result may be associated with
the constant velocity method of obtaining the response
data in this case.

Sinusoidal Excitation

In order to gain some insight regarding the
relative merits of sinusoidal excitation as opposed to
random excitation, two cases have been examined for
a model equipped with an electro-hydraulic shaker
contained in a tip tank (Model D). These results are

shown in Figure 5. The data in the left hand part of
the figure were obtained in the same manner as the
data of the previous figure except that the angular
motion of the tip of the model was deduced from the
combined output of two linear accelerometers mounted
in the tip tank.

The data shown in the right hand part of Figure
5 were obtained by measuring the amplitude of re-
sponse at the two accelerometer stations due to a
sinusoidal applied force. The amplitudes were meas-
ured after the shaker had been tuned to the frequency
of maximum response which, in this case, appearedto
be associated with the torsional mode. Althoughsome
response due to turbulence was present during the
shaker tests, the phase sensitive instrumentation used
effectively eliminated its effects.

It is noted that both sets of response data indi~
cate an equally good extrapolation to the flutter con-

" dition. If it is assumed that random excitation and

sinusoidal excitation will yield equally adequate extra-
polation results, the question of relative cost or dif-
ficulty of the two methods is of interest. It was
mentioned earlier that six cases of random excitation

‘as opposed to one case of sinusoidal excitation have

been examined. In the wind tunnel, at least, it is
believed that this six-to-one ratio is a fair estimate
of the relative difficulty of the two methods. This is
due, primarily, to the fact that the turbulence is always
available while the shaker must be constructed and
installed. Although turbulence also exists in the
atmosphere, the problem of finding it during a flight
test and determining enough of its properties to permit
its use might improve the relative attractiveness of a
sinusoidal shaker as a source of excitation.

n
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APPENDIX

The Response-Density Relationship

A more rigorous development of equation (7) can
be made along the following lines. Introduce the two
equations

2

(D - wzm)w oV DLW (Ala)

H

(D - wzm)z = pVZDL'Z (Alb)

where the first is simply the statement of flutter, i.e.,
equation (1) with forcing terms suppressed, and the
second is what we shall term the transposed mate of
equation (Ala). For fixed v and « , these equations
may be regarded as eigenvalue statements of o ; they
may be shown to have the same eigenvalues o, (which
in general may be complex), and hence maybe written

2
BWn = PV DLWn (A2a)

2
Bzm = bV DL'zm (A2b)

where B = D -»*m. Considered jointly, some signifi-
cant relations between wy and z,, may be found. Thus,
multiply equation (A2a) by z,,, equation (A2b) by wy,
integrate both over the wing surface, thensubtractthe
resulting expressions and make use of the fact

that [ z Bw dS = [wBz dS and [ z, D;w dS =
f wnDL’ zmdS; there resuilts the relation
1og = Py szLwndS (A3)

From this equation we arrive at the basic orthogonality
properties of wy and z,, as given by the following
equation

I
e]

I szLwndS m# n (Ada)

= A m=n (A4b)

We may now proceed to solve equation (1) by
expressing the deflection by the following series ex-
pansion involving w,, )

W= AW, 4 ByWy + AW, 4 ... (A5)

where the ay's are unknown coefficients to be deter-
mined. Substitute into equation (1), use equation (A2a),
multiply by z,,, integrate over the surface and then
apply equation (A4); the result is an independent solu-
tion for a, as follows

il szst + pof szgdS

a = (A8)
n 2

lon = ) VA

Now, if «», v, and 2, are chosento represent an actual
flutter condition (v = @, v = vf, 2 = o), then wy will
represent the associated flutter mode shape, and the
solution for a; becomes

) J 2z, FdS + pf z.F dS
a = 17s™ 2lg (AT)
'(,of—p)VfA1

This -solution thus confirms the validity of equation
(7) presented in the body of the paper. The form of the
equations is the same, but it is of interest to note
that the more rational analysis presented here indi-
cates that the generalized forces are associated with
the work done by the applied forces in moving through-
themodal displacements of the transposed system.
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VECTOR PLOTTING AS AN INDICATION OF THE APPROACH TO

FLUTTER

E. G. Broadbent — Royal Aircraft Establishment,
Farnborough, England

Abstract.

A binary flexure-torsion analysis has been made
to check theoretically a method for predicting flutter
which depends on plotting vectorially the amplitudes
of response relative to the exciting force and extracting
the relevant damping rate. The results of this calcu-
lation are given in the form of graphs both of the
vector plots themselves and of the estimated damping
rate against forward speed. The estimated damping
rates are compared with calculated values. The
method has the advantage that in a flight flutter test
damping can be estimated from continuous excitation
records: the method is an extension of the Kennedy
and Pancu technique used in ground resonance testing.

INTRODUCTION

The measurement of normal modes in a ground
resonance test needs an elaborate technique both to
ensure .that the modes are reasonably orthogonal,
and to ensure that no mode is missed. The presence
of structural damping presents one of the main dif-
ficulties. Kennedy and Pancu have suggested a method
of analysing the recordings taken by plotting vector-
ially the displacements relative to the exciting force.
Near circles are obtained for each resonance and
practical experience seems to show that this type of
plot considerably reduces the likelihood of missing a
resonance and also improves the accuracy of deter-
mining the resonant frequency. This in itselfleads to
modes being measured which are a better approxi-
mation to the true normal ‘modes than is usually
possible from amplitude plots alone. In addition the
structural damping can be estimated directly for each
resonance.

Because of its success in ground resonance
tests the idea has arisen of adapting the technique for
flight flutter testing. It is hoped that from the flight
test under continuous excitation the resonances might
be obtained in the same way as from a ground test,
with at the same time estimates of the overall damping
at each resonance frequency. Thusagraphof damping
rate against airspeed canbe obtained from a continuous
excitation method of flight flutter testing. In this way
it is hoped to obtain the best of two worlds; continuous
excitation allows more accurate analysis in the pres-
ence of buffeting than is possible from a decaying -
oscillation, and at the same time damping can be
plotted against airspeed; and damping gives a more
reliable warning of the approach to flutter than does
amplitude response. Near the flutter speed, however,
the analysis has to deal with adifferenttype of equili-
brium than in a ground resonance test, because the
aerodynamic forces are powerful and donot represent
a conservative system, In order to see whether this
leads to any difficulty in application, a simple flexure-
torsion binary example has been worked out in the
present paper and analysed by the Kennedy-Pancu
method at various forward speeds up to the flutter
speed. The dampings are obtained and plotted against
airspeed and the results are found to agree well with
calculated dampings. Some low speed wind-tunneltests
carried out by Bristol Aircraft Limited show that the
method can give results with a high degree of repeat-
ability, even in the presence of buffeting.

THEORY OF THE METHOD

The basis of the theory is outiined here fo
convenience. :
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One Degree of Freedom

The equation of motionfor one degree of freedom
can be written in the form:-

ai + el1 + iglg = Fet® o))
for a generalized exciting force Fei<t |
where a is an inertia coefficient
e is an elastic coefficient
q is a generalized co-ordinate

g is the phase angle of the restoring force (the
damping coefficient).

The steady solution will be motion of the form ¢'“*,

50 we substitute g =q (¢t

Equation (1) now becomes:-

[~wla + ef1 + i1g)lg = F (2)

We let «, be the natural frequency of the one degree

€ .
of freedom, i.e., o, = = and we obtain:-

alel(1 - 3% + igaflg = F 3

0

~ 5]
where 2% -—

2
Cl)0
For the purpose of vector plotting § is written the
form:-
g = 9, + 19 4)
For any exciting frequency, » , the quantities q;
and qj can now be calculated and plotted on an Argand
diagram to give the response vector at that frequency
relative to the exciting force; i.e., F is taken to lie
along the real axis.
Substituting Equation (4) in Equation (3) and

equating real and imaginary parts leads to:-

awp (9,1 ~ ) - q,g) = F ()

and

) lg,g + g1 - 3] =0 (6)

32

Hence

P e S — | )]

and
F -
q; = — 1 ¢ ] (®
aw; (1—$2}2+g2

As » is varied the locus of points (q, q;) is a smooth
curve obtained by eliminating & from these two equa-
tions:-

2
q F
.. Y1 (9)
2 2
94 awed; &
or
F
"7:‘ + qf + Jg; =0 (10)
a&)zg

This is the equation of a circlewithits diameter lying
on the negative imaginary axis andpassing throughthe
origin (see Figure 1).

The Position of Resonance

Resonance occurs when @ = 1 and from Equation
(7) qr =0, i.e., the vector OC on Figure 1 represents
the amplitude at resonance. We can obtain a relation
between the rate of change of frequency along the curve
at resonance and the damping g, so that if the curve
itself is obtained from measurements on a structure
of unknown damping, the damping can be estimated.

Consider the point D in Figure 1 when the fre-
quency iS w, + 3w . AtD

R (11)
2

Fi

$r

|/
[l

werby 1S

Figure 1, Vector Diagram for One Degree of
Freedom — Hysteresis Damping



~2
1-op

= (12)
g
from Eguations (7) and (8).
Hence
g =32(2 +EJ) cot—g—- (13)
@y Wy 2
Sw

It can be seen from Equation (13) that if = is
small, equal angles will be subtended by equal fre-
quency increments on either side of the resonance.

In the particular case wheng - —Z—we have:-

. @y
?‘,4 =1 +g =—
2
w,
and when 4 - - L N (14)
2
. <
@y = 1-yg =
2
OJO J
Hence
2 2
@ T Yy
2¢ =
a)?
0 (15)
2 2
wA + wH
2 =
and
Q)O
Whence
0.)2 (4)2
4 T “B
g = (16)
wz + CL);
(mA - cuBJ
% *-2% :

It is common practice in this country to express the
damping as a percentage of the critical damping. As
long as the damping is small, g canbe directly related
to the percentage of critical damping which isderived
from the concept of velocity damping: i.e., the ap-
propriate differential equation is:-

aj + dy + eq = petet (17)

Comparing this with equation (1)

di=eigq (18)

and substituting g =q elot

iwd = ieg (19)
Hence

g = (20)

But d = 2 E% vae where £ is the fraction of critical

Ce
damping ;-
Hence
£=2—%9 (21
o ¢
L0l .
so that at resonance g =2 < v (22)

It should be noted that if the damping is of the
form given by Equation (17) the locus of points (q,
q;) is no longer a circle; the steady solution will be

motion of the form , iwt, and substitutingq =T ¢*“* the
equation becomes:-

(~ qw’ + diw + )G = F (23)

Proceeding as before we obtain:-

I o— (24)

and
~ F e
% = =1 (25)
amj (1-3°%7% - w2§2
Here ; .—%_ so that the two systems represented by

ae

Equations (1) and (23) will have the same properties
at resonance if g =g. The vector q defined by Equa-
tions (24) and (25) now describes a quartic curve

(¢}

starting at the point( ;%; , O) when » =0 and finish-

ing at the origin when w-—»w ; any other branches are
for unreal frequencies. In practice for small values
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of g the curve is indistinguishable from a circle ex-
cept at low frequencies; this is shownin Figure 2 where
the circle of Equations (7) and (8) is compared with
the quartic of Equations (24) and (25).

%i
o

$r

ag+e Gsigg =Fe™t

ag+djt+eq =Ffe'¥t —__

Figure 2. Vector Diagram for One Degree of
Freedom — Comparison Between Hysteresis
and Velocity Damping

Two Degrees of Freedom

Kennedy and Pancu suggest that with N degrees
of freedom there will be N near circles. For any
particular resonance, the best circle is put through
the points and the resonance is given by the minimum

ow .
—-—, where s represents distance along the curve. If
ws

equal increments of » are taken the greatest change
of phase gives the resonance. The damping (g) can
then be extracted as for one degree of freedom.

Because this method appears to be the best way
of estimating damping in ground resonance tests, it
has been suggested that it might well be extended to
the estimation of damping inaflight flutter test, where
continuous excitation is being employed. The method
may be difficult when the dampings are highat medium
flight speeds, but shouldimprove againfor low damping
near the flutter speed. The difference between the
flight condition near the flutter speed and the ground
condition, where the damping is low in each case, is
that in flight there will be large asymmetric couplings
arising from the aerodynamic forces. It was decided
to see how important these were in practice by calcu-

~14.04v° + 1.96v1 + (1 + 0.021)7,

~.4vv1
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0.63vvi + 2.27°

lating the response of a simple binary example at
various speeds up to the flutter speed.

BINARY EXAMPLE

Basic Data:
Geometry
For simplicity a 2-dimensional rigid wing, re-

strained by springs in vertical translation and pitch
was considered. The two degrees of freedom are:

Vertical translation: z = cqq (representing wing

flexure)

Pitch: a=qg (representing wing
torsion)

in general =Cqy +Xqy

The axis of pitch is at the half chord.
The axis of centre of gravity is at the half chord.

Since the modes are uncoupled at zero flight speed
they are normal modes and the frequency ratiois
wziwaii 0,4676:1,

Structural damping at a value of g = 0.02 is
assumed to be present in each degree of freedom. It
is assumed that displacements to be recordedinflight
tests are linear displacements at the half chord,
quarter chord and leading edge and the angle of pitch.
Thus the first and last of these 'pickups' give meas-
urements proportional to the generalized co-ordinates
4y and qg respectively. Finally it is assumed that
the excitation is linear vertical excitation applied at
the quarter chord.

Wing Flutter
The aerodynamic derivatives are’'assumed tobe
constant both with the frequency parameter and for-

ward speed, i.e., any Mach number effect is neglected.

The equations for free oscillation canbe written
in the form:-

q =0 (26)

~0.8906v° + 0.24vVi - .5650" q
+.20 (1 + 0.02i)y,



where V c” flutter speed

w(.‘

vV oz e

VC

v

v o=

VC
11

Yo T

szsc2

¢ is the wing chord

s is the wing span

The equations were solved for yo with v =1 (cor-
responding to the critical flutter speed), and gave
Vo = 2.92 and v = 0.666.

From a knowledge of yg it is possible to relate
any known Ej; (the spring restraint against vertical
translation) to an actual flutter speed (V.), knowing
the dimensions. Here,however, we are only interested
in the relative speeds, i.e., v, the fraction of V.

Response Calculations
With the excitation at the quarter chord and

after the substitution for y, = 2.92, Equation (26)
becomes:-

(~14.04v> + 2.92) + (1.96vv + 0.0584)1

¢

2.2m® + o.63wvi

-0 7,,

0-45 0-437S

J-2-0

Figure 3. Vector Diagram for Binary Example:
v = 0,75, displacement 1

(-.8008v° - 0.5850° + 0.9469) q 27

+ (0.24vv + 0.016938)1

where F is an arbitrary force level. For simplicity
F is taken to be unity in the calculation which follows.
Values of v = 0, 0.25, 0.5, 0.75, 0.9 and 1.0 were
chosen, and in each case qi and (g were calculated
for a set of increments inw . Assuming perfect
accuracy of recording the measurements takenin flight
from the four 'pickups' (half chord, quarter chord,
leading edge, pitching angle) would be ql,q1-1/4q2,
a;-1/2a,, 9,-

These quantities were plotted vectorially and the
frequencies and rates of decay were estimated from
the near circles; a typical example is shown in Figure
3 for pickup 1 at 3/4 of the flutter speed.

Comments on Figures

The change in character of each vector diagram
as the forward speed is increased is indicated in Fig-
ures 4 to 7. Consider first Figure 4 for displacement
1, i.e. the displacement of the first pickup (see above)

which gives a direct measure of the first co~ordinate
in the calculation. At zero speed the co-ordinates are
normal co-ordinates so that the vector diagram re-
sults in a single pure circle with a resonance fre-
quency given byw = 0.456. As speed is increased the
size of the circle reduces (the same scale has been
kept throughout each of Figures 4 to 7, although of
course different scales were used to estimate fre-
quency rates of decay in practice) and a small sec-
ondary circle starts to appear near the origin. This
second circle occurs at the frequency of the pitching
mode which is now beginning to couple slightly with
the bending mode due to the presence of the aero-
dynamic forces. The new circle continuestoincrease
in size until at a speed of nine tenths of the flutter
speed it is the greater of the two. The last diagram
in this series is drawn for the flutter speed itself at
which one of the circles must have increased indefi~
nitely in size. This is in fact the new circle cor-
responding to the higher frequency.
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Figure 4. Vector Diagram for Binary Example: Displacement 1, Varying Speed

V=Q-0

9

Figure 5.
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Figure 6. Vector Diagram for Binary Example: Displacement 3, Varying Speed



Figure 5 gives the diagrams for displacement 2,
the quarter chord, which shows two circles even at
zero speed; neither of these circles are perfect al-
though the error is not detectable on the scale shown.
Both circles reduce with increasing airspeed for atime
and the smaller (corresponding to the higher fre-
quency) changes its position relative to the origin.
Ultimately, as before, the higher frequency circle
increases in size to an indefinite extent at the flutter
speed. Similar sequences are shown for the other
pickups in Figures 6 and 7, although in the last figure
the higher frequency circle remains the larger
throughout.

Estimation of Damping in Flight and Conclusion

As outlined in paragraph 2 we estimate the
damping "c% from the circles. Near each resonance

suitable equal increments in frequency are chosen,
and these are marked on the curves of Figure 3. The
actual resonance is picked out from the figures by
using a pair of dividers to get the maximum phase
change, In this example there wasnever any difficulty
in putting a circle through the points (a typical circle
is shown in Figure 3) and the damping was estimated
from convenient increments of frequency as can be
seen from the construction on Figure 3.

The damping as obtained from each pickup was
then plotted against forward speed, and the resuitsare
shown in Figure 8. Since our example is completely
specified mathematically, the dampings can also be
calculated exactly. In Figures 9 and 10 the calculated
roots are plotted and compared with the estimates
from each of the four 'pickups'. Figure9A, shows the
change in frequency of the lower frequency with for-
ward speed and Figure 9B, shows the change in damp-
ing: Figures 10A and B give the corresponding re-
sults for the higher frequency root, which is the one
that leads to flutter at v = 1.0. The agreement in
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general between the different estimaes andthe calcu-
lated values is very good. The only serious error in
the lower frequency root is obtained from the rota-
tional 'pickup'; this seems to give the wrong trend of
frequency with speed when the damping exceeds 10% of
critical — a condition which would in any case be
unimportant in practice. For the higher frequency
root the accuracy is good throughout, and best for
this same rotational pickup, as might be expected on
qualitative grounds. Any of the pickups, however,
would give a good prediction of flutter speed (see
Figure 10B) provided the speed increments chosen
were not too large.

From flight measurements in practice one could
scarcely hope to get such a consistent set of results
as has been obtained from the estimates in this
simple binary example. Onthe other hand the example
does suggest that the method is sound in principle so
that if there are practical arguments which favour
recording from continuous excitation rather than
decaying oscillations the Kennedy and.Pancu type of
analysis is likely to provide good results. It may well
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be however, that with many degrees of freedom pres-
ent, as on real aircraft, the choice of pickup position
is more important than in the binary example. In
general the flight analysis would be carried out for
two or three pickups as a normal safety precaution.

RESULTS FROM ALOWSPEED WIND-TUNNEL
MODEL

The method outlined above has been applied by
Bristol Aircraft Limited to a wind-tunnel model de-
signed to investigate flutter of a T-tail configuration.
Figure 11 shows a typical vector diagram at a for-
ward speed that is about 83% of the extrapolated
flutter speed. The diagram is for the mode which
starts at zero speed as tailplane fundamental sym-
metric torsion, and which provides the main pointer
to the critical flutter condition as did wing pitch in
the theoretical example of section3. The experimental
results are consistent and define a very good circle.
Figure 12 shows the variation in frequency and damp-
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ing with airspeed of the fundamental bending mode of
the tailplane and Figure 13 gives the corresponding
results for the fundamental torsion mode*, The graph
of Figure 13 can be extirapolated to the flutter speed.

It is not the purpose of this paper to deal with
the experimental technique involved but one or two
points should be made. It is necessary to have a
phase meter available that gives accurate readings in
the presence of buffeting. The instrument used by
Bristols measures in-phase and quadrature compo-
nents, and is arranged to descriminate against noise
(as in a wattmeter type of phasemeter). It can give
an accuracy of about 5% even with a signal to noise
ratio as low as unity. The rate of sweep of the ex-
citer (in terms of frequency) is determined by trial
and error, and a satisfactory rate will depend on the
damping in each case. The frequency control of the
exciter must be accurate, i.e., high shortterm stabil-
ity is required, and in practice at low dampings the
frequency increments may need fo be as small as
0.4% in order to get a reliable measure of the
damping. '

*These terms are used fordescriptive purposes
only: in practice, of course, the modes change shape
under the aerodynamic forces.
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is an inertia coefficient
is a damping coefficient
is an elastic coefficient

is the phase angle of the restoring force (a
damping coefficient)

is a.generalized co-ordinate

is a generalized exciting force

is the natural ‘frequency of one degree of freedom
is the exciting frequency
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is the flutter speed
is the forward speed
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is a frequency parameter _°
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c is the wing chord ¢
s is the wing span
p is the air density
Eqq1 is the spring restraint against vertical trans-
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z  is vertical displacement
a 1is the angle of pitch
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A FLIGHT INVESTIGATION OF OSCILLATING AIR FORCES:

EQUIPMENT AND TECHNIQUE

W. H. Reed Il — NACA, Langley Laboratory,
Langley Field, Virginia

Abstract

A description is given of the equipment and
techniques to be used in a project aimed at measuring
oscillating air forces and dynamic aeroelastic re-
sponse of a swept wing airplane at high subsonic
speeds. Electro-hydraulic inertia type shakers in-
stalled in the wing tips will excite various elastic
airplane modes while the related oscillating chordwise
pressures at two spanwise wing stations and the wing
mede shapes are recorded on magnetic tape.

The data reduction technique, following the
principle of a "wattmeter" harmonic analyzer em-
ployed by Bratt, Wight, and Tilly, utilizes magnetic
tape and high speed electronic multipliers to record
directly the real and imaginary components of oscil-
latory data signals relative to a simple harmonic
reference signal. Through an extension of this tech-
nique an automatic flight-flutter -test data analyzer is
suggested in which vector plots of mechanical admit-
tance or impedance would be plotted during the flight
test.

INTRODUCTION

Most theoretical methods for computing oscil-
lating air forces are based on linear potential flow
theory, and as such may be expected to deteriorate
in accuracy as shock wave and flow separationeffects
come into play at high subsonic and transonic Mach
numbers. The experimental data available for evalu-
ating the accuracy of theory in this Mach number
range is extremely limited, and the accuracy of the
data is frequently uncertain because of wind tunnel
interference effects. In view of the need for accurate
predictions of flutter, it is important that we extend

our knowledge of oscillating air forces in this speed
range,

To help meet this need, the Flight Research
Division at NACA-Langley has undertaken a project
aimed at measuring oscillating air forces in flight.
It is hoped that these measurements, obtained under
full scale flight conditions and free from wind tunnel
interference effects, may serve as a check on the
accuracy of unsteady aerodynamic theory. Inessence,
the test method will consist of exciting various elastic
modes of the -airplane in flight by means of sinu-
soidal shakers installed in each wing tip. Oscillating
air forces will then be investigated two ways: First
the aeroelastic response of the airplane to knownforce
inputs will be studied to obtain information on the
integrated effects of oscillating air forces; and, sec-
ond, the oscillating chordwise pressure distribution
at two spanwise stations will be measured to gain a
detailed insight into the nature of oscillatory flows at
high subsonic speeds. Experimental measurements of
both the forced response and pressure distributions
will then be compared with theoretical predictions.

While obtaining experimental data on oscillating
air forces is the primary goal of the project, a sec-
ondary, and perhaps equally important, aim is to gain
experience which would be applicable to flight flutter
testing techniques. This experience would include the
development of excitation equipment and instrumenta-
tion, data reduction techniques and flight test methods
involving the measurement of forced response.

This paper discuses some of the equipment and
testing techniques planned for the project and points
out, where possible, their application to flight flutter
testing.
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FORCED RESPONSE

Theoretical Forced Response Method

We will first consider the forced response phase
of the project — butbefore discussingthe experimental
techniques, it is of interest to take a brief look at the
theoretical analysis with which the experiment willbe
compared. The mathematical representation of the
airplane wing panel is shown in the first figure.

An influence coefficient type dynamic analysis
is used wherein the inertia, the aerodynamic, and the
excitation forces acting on the wing are assumed to
be concentrated at the eight discrete points shown.
Associated with these points are a set of measured
flexural influence coefficients and lumped masses
representing the wing structure, The aerodynamics
of the problem are obtained from the kernel function
method of Watkins, Runyan and Woolston (ref. 1), As
used here, the method, which is a three dimensional
lifting surface theory, provides the aerodynamic load
distribution in terms of the wing displacements at the
influence points. The air loads concentrated at each
of the influence points, are then obtained by inte-
grating the load distribution over the appropriate
areas that are shown by the dashedlinesin the figure.
The response problem approached in this manner has
several advantages. Tt can be conveniently pro-
grammed on large scale digital computers. The mode
shapes are defined directly by the vector displace-

X g

ments of the influence points. And the accuracy of
the mathematical representation of the airplane struc-
ture can be readily assessed by comparing ground
measurements of forced response and mode shapes
with calculated results in which the air forces have
been omitted.

Matrix equations for aeroelastic forced response
have been formulated by C, E. Watkins and J. L, Sewall
of the Dynamic Loads Division, NACA -Langley, for use
with an existing program of the kernel function
method onthe IBM 704 computer. Preliminary results
obtained by the method for the forced response of a
wind tunnel model show good agreement with experi-
mental data. In the present tests, measurements will
be made of the response at the 8 influence points
shown in the figure together with the shaker input
force. The next figure (Figure 2) shows these and
other vibrations pick-up locations on the test air-
plane.

Airplane and Instrument

The test airplane is an F-86D, The sweepback
angle of the 1/4 chord of the wings is 35°, the aspect
ratio is 5, and the thickness ratio is about 10 percent.
The normal slotted leading edge for this airplane
has been replaced by a fixed leading edge in order
to eliminate certain flow irregularities and struc-
tural vibrations presented with the slotted configur-

- ation.

LUMPED PARAMETER REPRESENTATION
OF FLEXIBLE WING

X< }
Zg Zg

SECTION AA

{2} -wz[c] [m] {z} + [c] {Fsmaxer} +[c] {"aero}

Figure 1. Lumped Parameter Representation of Flexible Wing
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{ VELOCITY PICKUPS
(OCILLOGRAPH)

} ACCELEROMETERS
(MAGNETIC TAPE)

SHAKER

Figure 2. Location of Vibration Pickups on Test Airplane

The vibration pick-up locations are indicated by
the arrows in the figure and the direction of the
arrows depicts the sensing axis of the transducer.
The primary measurements, indicated on the figure
by the circles, are from accelerometers located at
the 8 influence points on the wing and also in one of
the shaker masses. These accelerometers are NACA
variable inductance telemetering transducers equipped
with temperature regulated ovens to minimize the

effect of outside temperature on the damping of the
units. The accelerometer outputs are telemetered to
a ground recording station and recorded on magnetic
tape. Vibration data from other locations on the
airplane, shown in the figure by arrows without
circles, are obtained from MB type 124 self-gener-
ating velocity pick-ups and are recorded in the air-
plane on a recording oscillograph. A complete listing
of the flight instrumentation is given in Table I.

TABLE 1 — AIRPLANE INSTRUMENTATION LIST

)

(a) Response Data

(Telemetered and recorded on magnetic tape)

No. of Channels Measurement
8 Acceleration
Acceleration
2 Egcoswt, Egsinwt
1 Timer
1 Voice

Description or Location

8 influence points on left wing
Shaker mass on left shaker

Shaker input signal and input signal with 90°
phase shift

(b) Oscillating Pressure Data
(Recorded in airplane on magnetic tape)

No, of Channels Measurement
9 Pressure
1 Acceleration
1 Acceleration

Description or Location

9 chordwise locations at 0.607 or 0.85¢
spanwise station

Front spar at 0.602 or 0.857 spanwise
station

Rear spar at 0.607 or 0.857 spanwise sta-
tion
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TABLE I (cont)

{c) Miscellaneous Data

(Recorded in airplane onoscillograph)

No. of Channels Measurement

2 Velocity (vertical)

Velocity (vertical)
Velocity (vertical)

2 Velocity (vertical)
1 Velocity (horizontal)
3 Angular displacement

Shaker input signal
2 Shaker feedback

2 Airspeed, altitude

Maneuver Acceleration

2 Log of wing tip acceler-

ation

Shakers

Shakers are installed in.each wing panel in the
vicinity of the tip. In the next slide (Figure 3) is
shown a schematic diagram of one of the shakers.

The principle of operation is that of a simple
electro-hydraulic servo system having position feed-

Description or Location

Right and left wing on front spar at 0.707
spanwise station (to check symmetry of
airplane response)

Fuselage nose, fuselage tail

Fuselage and wing center section (to deter-
mine rigid body pitch, roll, and translation)

Stabilizer tips
Vertical tail tip

Position transducers located on left wing at
3 aileron hinge points

From shaker input signal generator

Right and left shaker displacement potenti-
ometers

Airspeed head on nose boom

3-component low-frequency accelerometer
mounted hear airplane cg

Vibration amplitude from accelerometer on
left wing tip; vibration frequency from input
signal generator. Data recorded whenever
shaker operates.

back. A mass, which is free to translate ina
direction perpendicular to the plane of the wing,
is driven hydraulically by means of an electro-
hydraulic servo valve, The valve is actuated by an
electrical error signal proportional to the difference
between the position of the mass called for by the
input signal generator and its actual position which
is sensed by a slide wire potentiometer. The force

WING SHAKER BLOCK DIAGRAM

HYDRAULIC VA
POWER SOURCE (WING + SHAKER)
;W_-—/ . .
Eg COS wt “ “ Z(wiNG) Z(WING)
' ELecTRo- W
i AMPLIFIER }»| HYDRAULIC
SERVO-VALVE[T
MASS

SHAKER POSITION FEEDBACK

Eg SINwWt  Eq COSwt
4 0 v 0 J

SIGNALS UTILIZED
FOR DATA REDUCTION

Figure 3. Wing Shaker Block Diagram
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output and frequency of the shaker can be controlled
independently through adjustment of the voltage level
Eo and frequency « of the electrical input signal
which is obtained from a mechanically driven sine-
cosine potentiometer. Note that in addition to pro-
viding the input signal E; cos o t, the signal gener-
ator also provides a signal that is 90° out of phase
with the input, i.e., Eg sin wt. Both of these signals
are recorded on magnetic tape for use in data re-
duction which will be discussed later.

The weight of the moving part of the shaker
can be varied on the ground from a minimum of
60 lbs. to a2 maximum of 100 lbs. The maximum
displacement amplitude of the moving mass is 0.8
inches. With shaker mass known, the input force to
the wing can then be drived from acceleration meas-
urements on the moving mass together with similar
measurements on the wing structure ahead of and
behind the shaker location. The maximum force output
of each shaker is limited by the hydraulic system to
a value of about 1,000 lbs. which, for the heavy shaker
condition, occurs at frequencies of 11 cps and higher.

By flight flutter testing standards, a forcing
function of this magnitude is probably several times
greater than would be necessary for adequate response
of an airplane of the size used here. In the present
application, however, forece inputs of this magnitude
are believed necessary in order to provide measur-
able oscillating pressures in the pressure measuring
phase of the project.

In the next figure (Figure 4) is shown a listing
of the primary shaker controls and indicators to the
pilot.

The shaker frequency may be varied either by
manual tuning to any desired frequency in the range
from 4.5 to 40 cps or by scanning the frequency range
by means of a programmed automatic frequency
sweep device, With the shaker in automatic sweep
operation, the variation of frequency with timeis such
that the percent change of frequency per cycle is
constant ( ‘a/w® = constant), Thus the sweep rate o
increases as the square of the frequency. It can be
shown, on the basis of the response of a lightly
damped single degree of freedom dynamic system,
that use of the above frequency sweep relation makes
the errors due to sweep independent of where in the
surveyed range of frequencies resonance occurs (ref,
2). The time required {o cover the frequency range
in one direction is adjustable from 15 to 100 seconds.

The amplitude of both shakers is controlled
simultaneously by means of one knob which controls
the voltage level of the input signal.

Selector switches are provided for choosing
between symmetrical and antisymmetrical excitation.
To make the excitation as nearly symmetrical or
antisymmetrical as possible an effort has been made
1o match the dynamic characteristics of the two shaker
servo systems.

The input signal can be either a sine wave for
forced response measurements or a square wave,
having a period of 10 seconds for transient response
measurements. Note that the square wave signal calls
for a succession of abrupt position changes of the
mass. Therefore, the force input to the wing is
dependent on the dynamic response characteristics of
the shaker to a step input signal.

PRIMARY SHAKER CONTROLS

I. FREQUENCY
(@) MANUAL TUNING

(b) AUTOMATIC SWEEP

2. AMPLITUDE

3. PHASE SELECTOR
(@) SYMMETRIGAL
(b) ANTISYMMETRICAL

4. INPUT SELECTOR
(0) SINE WAVE
(b) SQUARE WAVE

5. QUICK CUT OFF
(FOR DECAY RECORDS)

INSTRUMENT PANEL DISPLAY

I. FREQUENCY

2. WING TIP ACCELERATION
3.SHAKER AMPLITUDE
Figure 4. Primary Shaker Controls
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The last control is the quick cut-off switch,
with which the shaker can be stopped within half a
cycle. This will be used when measuring the decay
of various modes excited by the forced response
technique.

To aid the pilot in tuning to resonance and
keeping the amplitude of wing response at the desired
level, meters are provided which give an indication
of the shaker frequency, the amplitude of acceleration
at the wing tip, and the amplitude of shaker displace-
ment relative to the wing.

This concludes the discussion of the forced
response phase of the project. We will next consider
the second phase which is aimed at measuring oscil-
lating chordwise pressure distributions by shaking
the wing at various resonant frequencies.

PRESSURE MEASUREMENTS

The primary measurements in this phase are
the pressure differences between the upper and lower
surface of the wing at the 60 and 85 percent semispan
stations together with acceleration measurementonthe
front and rear spar at these stations. Again the data
will be recorded on magnetic tape. The pressure
pick-ups to be used are NACA miniature inductance
type gages designed to accurately measure high fre-
quency fluctuating pressures (see ref. 3). These
gages, schematically illustrated in Figure 5, utilize

a flat stretched diaphragm whichisinstalled vertically
in the wing in order to minimize acceleration effects.
By referencing an oscillating pressure to its steady
state value through a suitable acoustical filter, only
the oscillating part is detected by the gage. The
pressure difference between the upper and lower
surfaces at a given chordwise locationis thenobtained
by electrically combining the cutputs of the upper and
lower gages.

Pressure measurements at the two spanwise
stations will be made at the 9 chordwise locations
shown in the figure. In order to improve accuracy
when integrating the pressure distributions, the gages
have been placed at points given by Gauss's formula
for numerical integration (ref. 4). The locations of
the four cells within the 0 to 25 percent chord band
satisfy the four ordinate Gauss formula and the re-
maining five cells between 25 and 75 percentband are
positioned to satisfy the 5 ordinate formula.

The theoretical pressure distribution given in
the figure indicates approximately the magintude and
phase angle of oscillating pressure that might be ex-
pected in flight at the 85 percent semispan station.
These results were obtained from the kernel function
procedure using the ground measured first bending
mode shape to define the downwash boundary condi-
tions. The pressures shown are for a Mach number
of 0.9, an altitude of 5,000 feetanda wing tip vibration
displacement amplitude of +2 inches. Note that the
average pressure amplitude is about +0.3 psi, but to
provide for the measurement of much larger pressure
fluctuations occasioned by the oscillation of a shock

WING SECTION SHOWING PRESSURE PICKUP LOCATION AND
THEORETICAL OSCILLATING PRESSURE DISTRIBUTION
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Figure 5. Wing Section Showing Pressure Pickup Location and Theoretical Oscillating Pressure Distribution
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wave over an orifice, the gages selected have a range
of +2.0 psi.

MEASURED GROUND MODES

As an indication of the vibration amplitude at the
pressure measuring stations, the measured ground
mode shapes and node line patterns for the test air-
plane are shown in the next slide (Figure 6). These
modes were excited with electro dynamic shakers
attached to the rear spar near the tip of each wing
panel. The flight shaker was simulated for these
measurements by attaching 130 1b. weights at the
location of each of the flight shakers. Note from the
plot of node lines that the first antisymmeterical
bending (f = 9.75 cps) mode crosses the inboard
pressure station at about the 1/4 chord point and the
second symmetric bending (f = 21.7 cps) node crosses
the outboard pressure station at approximately the
same chordwise position. The angle between the node
lines and pressure orifice bands is about 45° in both
cases, indicating that the wing motionatthese stations
involves .considerable torsion. The torsion mode at
f = 32.5, however, may not be adequately excited in
the flight tests because the center of the shaker force
is very close to the torsional node line.

Wing Fatigue Considerations

Mention should be made here of the steps that
have been taken to assure that the relatively large
amplitude shaking, planned in the pressure measure-
ment phase of the project, will not induce structural
fatigue failures in the wing. A check against the
occurrence of such failures was made by shaking a
duplicate wing which had the same structural modifi-
cations and shaker installation as incorporated in the
flight wing. In these tests each of the modes shown in
the figure was excited at the amplitude desired in
flight and for a duration ten times as great as the
estimated testing time in flight. No evidence of fatigue
was discovered. During the flight tests the amplitude
and frequency of vibration at the wing tip will be
continuously logged and also monitored by the pilot to
assure that the safe limits established by the fatigue
tests are not exceeded in flight.

DATA REDUCTION TECHNIQUES
Wattmeter Principle of Data Reduction

In reducing the flight forced response and os-
cillating pressure data it is essential that accurate

MEASURED WING MODE SHAPES AND NODE LINES

{st SYMMETRIG
f=6.25 cpsS ,

Ist ANTISYMMETRIC
f=9.75¢cps ,
/

2nd SYMMETRIC '
f=21.7cps /’ TORSION
! f=325c¢cps

]O - - 1
_Z
ZREF

0 SN [ LOCATIONS
~
T X
-0} . .
—— FRONT SPAR
° y oo 10 ____REAR SPAR

Yrip

Figure 6. Measured Wing Mode Shapes and Node Lines
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measurements are made not only of the amplitude of
oscillation but also of the phase angle. With most data
reduction techniques the primary difficulty lies in
measuring the phase angle accurately. This is es-
pecially true when unwanted harmonics are present
in the data. This difficulty is avoided, however, by
the use of a technique employed by Bratt, Wright,
and Tilly (ref. 5) in which separate measurements
are made of the vector components of vibration data,
The method is known as the "wattmeter" principle
of harmonic analysis because just as a wattmeter
measures power by indicating the average value of
the product of the potential difference and current,
the analyzer measures the component of a data signal
in phase with a simple harmonic reference signal by
indicating the average value of the produce of the two
signals,

In the present application of the principle, use
is made of an electronic analog computer coupled
with magnetic tape play-back equipment. In Figure 7
we see that the principle involved is precisely that of
a Fourier analysis. Thus, a periodic data signal

4 o
F(t) = -?O i n§1 (Apcos nwt + B,sin nwt)

is multiplied by a simple harmonic reference signal
having the fundamental frequency of the data signal

E(t) = Eo cos wt

The resulting product, when averaged, is proportional
tothe Fourier coefficient Aq, the factor of proportion-
ality being Eo/2 which is known or can bé measured.
This is readily seen from the equation for Ay

2
4 =-——fT Flt)coswtds
1 T "o

2
= — (Average value of product F(t) E(t))

E
o

In a similar manner, By may be computed by multi~
plying the data signal by the reference signal shifted
90° in phase, i.e., Eg 8in » t. The computer com-
ponents used for multiplying the signals are high
speed quarter square multipliers. These are com-
mercially available electronic devices which have
negligible phase shift at frequencies below 100 cps
(ref. 6),

As mentioned earlier, the reference signal and
its quadrature component are obtained from the input
signal generator which drives the shaker. This as-
sures that the frequency of the reference signal is the
same as the fundamental frequency of the forced
response. Since the reference signal is used as the
common frame of reference to which all data vectors
are referred, its phase angle relative to the shaker
force is entirely arbitrary. The real and imaginary
components of a data vector are, then, respectively,
the vector's components in phase and 90° outof phase
with the reference signal E, cos o t.

An Automatic Flight Flutter Test Data Analyzer

_ Since this Symposium is concerned primarily
with flight flutter testing it is of interest to consider
the possibility of utilizing the wattmeter principle as
a basis for an automatic flight vibration data reduc-
tion and analysis system. Three advantages which
make this technique of data reduction particularly
attractive for handling flight flutter test data are:
first, the data can be reduced as thetest is being run;
second, undesirable harmonics are automatically
filtered from the data; and, third, the reduced data,
being in the form of vector components, can be con-
veniently compared with theoretical results.

The system shown in Figure 8 would display a
vector plot of the frequency response or admittance
(the ratio of the displacement amplitude of a point on
the structure to the amplitude of the sinusoidal force

WATTMETER PRINCIPLE OF HARMONIC ANALYSIS

- Ao @ 1)
Fi=5=+2 (AnCOSNwt+BnSINNw

n=|

HIGH SPEED
QUARTER SQUARE
| MULTIPLIER

E(IF(f) _|AVERAGING
"1 CIRCUIT

E()=Ecoswt

RECORDER

T

AVERAGE VALUE OF E(})F(1)

Figure 7. Wattmeter Principle of Harmonic Analysis
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AUTOMATIC DATA REDUCTION AND STABILITY INDEX PLOTTER
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Figure 8. Automatic Data Reduction and Stability Index Plotter

that causes the displacement) for a selected pick-up
location on the airplane as the frequency of excitation
is varied over the range of interest. The use of
vector response plots in the analysis of airplane
ground vibration response data has been discussed by
Kennedy and Pancu in reference 6 and much similar
work of this type has been developed for stability
analyses relating to feedback amplifiers (reference
'7) and servo mechanisms (reference 8),

No attempt will be made here to discuss the
merits of vector plotting other than to say that re-
sults of theoretical forced response analyses, such
as the influence coefficient method discussed earlier
in the paper, can also be conveniently presented in
the form of vector response plots for ready compar-
ison with experiment.

To illustrate the system, assume that the test
vehicle is instrumented to telemeter the following
data: acceleration response at various points of in-
terest on the structure Zy(t), Zo(t) . . ... ... . Z4(t)
the excitation force F(t), a simple harmonic reference
signal Ey cos « t that has the fundamental frequency
of the exciter, and the component 90° out of phase
with the reference signal Eg sin «» t. These data are
recorded on magnetic tape at the ground telemeter
receiving station while at the same time the acceler-

ation response signal selected to be analyzed during"

the frequency sweep is fed to the analyzer, together

with the shaker input force signal and the two refer-
ence signals. The acceleration response is double
integrated to give Z(t) which, in turn, is multiplied
by the reference signals and averaged to give outputs
proportional to the real and imaginary components of
Z. In a like manner, F(t) is multipled by the refer-
ence signals and averaged to give an output propor-
tional to the real and imaginary components of F,
Having the vector components of Z and F, an analog
computer performs the arithmetic operations re-
quired to obtain the vector components of the fre-
quency response (Z/F)real and (Z/F)imag.- Note
that since the vector components of Z and F are
slowly varying quantities whose rates of change with
time for a given system depend upon the frequency
sweep rate, high speed multipliers are not required
in this stage of the analog computer.

Next, the real and imaginary components of Z/F

are connected to an X-Y plotter in a manner such
that (Z/ F)rea: drives the recorded pen along the X-
axis of the plotter and (Z/F)imag. drives the pen
along the Y-axis. Thus, as the shaker frequency is
.varied, the plotter maps the locus of the vector Z/F,
The amplitude of the vector at a given frequency is
determined by the length of a line drawn between the
curve and the origin of the real and imaginary axes,
and the phase angle is the angle between this line and
the positive real axis, The frequency of forced
response is indicated by feeding the reference signal
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to a frequency measuring device which pulses the
recorded pen at equal frequency increments.

Thus the frequency response for one of the
pick-up locations is plotted during the test. Ata
later time, perhaps while the pilot maneuvers for the
next test run, the data on magnetic tape can be played
back into the analyzer and other channels selected
for plotting.

CONCLUDING REMARKS

To sum up, we have discussed some of the
equipment, instrumentation and data reduction tech-
nigques to be used in a project aimed at measuring
oscillating air forces in flight. Also, we have con~
sidered some possible applications of these techniques
to the problem of flight flutter testing. The equipment
and instrumentation is now being installed in the air-
plane and flight test data on theforced response phase
of the project should be available in the near future,
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THE APPLICATION OF MEASUREMENT TECHNIQUES TO TRACK

FLUTTER TESTING

H.R.Roglin — U. S. Nuval Ordnance Test Stution,

China Lake, Culifornia

Abstract

This paper discusses the application of meas-
urement techniques to captive flight flutter tests at
the Supersonic Naval Ordnance Research Track
(SNORT), U, S. Naval Ordnance Test Station, China
Lake, California.

The high-speed track, by its ability to prove the
validity of design and to accurately determine the
actual margin of safety, offers a unique method of
flutter testing for the aircraft design engineer.

INTRODUCTION

In the few years that high-speed tracks have
been in existence, their usefulness has been demon-
strated as a vital laboratory instrument in expanding
knowledge in many scientific fields. Capable of pro-
viding high linear accelerations of relatively long
duration with dependable recovery of the test item for
examination and retesting, the supersonic track offers
nearly all the advantages of laboratory testing, com-
bined with the advantages of free flight.

The versatility and control of the test environ~
ment offered by the high-speed track provide an opti-
mum medium for experimental studies in the best of
analytical procedures. Tracks have been successfully
used for the captive flight testing of rockets, guided
missiles, model or full-scale airplanes, ortheircom-
ponents, under conditions approximating free flight
into the supersonic range, including measurement of
thrust, acceleration, velocity, lift, drag, vibration,
shockwave effects, flutter, and aerodynamic heating.
They have been used also for aeroballistic tests of
high-velocity launching of rockets or projectiles, as
well as tests of fire-control systems, fuze function,

aircraft damage, ejectable components, and for the
development and calibration of inertial guidance sys-
tems and components. On the high-speed track,
large test items can be brought up to supersonic
velocities and sustained at these velocities long
enough to make the observations and measurements
required and stopped intact, One of the paramount
virtues of the supersonic track lies in the relative
ease with which instrumentation, both photographic
and electronic, can be precisely applied to the point
of action to insure optimum coverage.

The problem of flutter has, in recent years,
been given prim‘ary consideration in the design of
high-speed aircraft and missiles. The application
of the supersonic track to flutter testing has been the
result of efforts to find more adequate means of
evaluating and testing new .designs in their progress
to the flight test stage.

SLED DESIGN

In supersonic track flutter tests, the test item
is mounted on a track vehicle properly designed to
realize the required degree of simulation, and a
series of runs are made, each at discrete incre-
ments of velocity until either flutter of the test item
occurs or an adequate margin of safety has been
demonstrated. A general-purpose sled is used where
the flutter characteristics of these surfaces are not
unduly influenced by the aerodynamic effects of the
vehicle itself.

Figure 1 is a view of a general-purpose track
sled used for vertical stabilizer flutter tests. Fig-
ure 2 is a view of the same sled adapted for flutter
tests of a horizontal stabilizer. It may be necessary
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Figure 1. General Purpose Flutter Test Vehicle with
Vertical Stabilizer

Figure 2, General Purpose Flutter Test Vehicle
Adapted for Horizontal Stabilizer Tests

Figure 3. Track Flutter Test Vehicle Incorporating
Entire Fuselage in Sled Design
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to incorporate an entire fuselage into the sled design
to preserve the aerodynamic and structural effects
on the stability of the tail structure, as shown in
Figures 3 and 4. It is, of course, necessary that the
complete control systems associated with the tail
structures be incorporated into the design of the sled
structure,

Figure 4. Navy Flutter Test Sled Utilizing Entire
Fuselage of Plane

CONTROL OF SLED VELOCITY

The design of the sled vehicle and the propul-
sion system to be used is mainly a problem in attain-
ing the required velocities. It is convenient to con-
sider the progress of the sled down thetrack as being
in four distinct phases: the acceleration phase, the
low-acceleration phase (or in other types of track
tests, the sustain phase), the coast phase, and the
braking phase.

The acceleration phase is achieved by several
rocket motors firing together or in sequence, or by
the use of one or more detachable booster sleds ac-
celerating the main vehicle, When the thrust of the
rocket motors is equal to the aerodynamic dragof the
sled, a condition of zero acceleration is achieved, and
the sled is sustained at a constant velocity. In cer-
tain flutter tests, it is required that the test item be
accelerated to a velocity well below the expected
critical velocity, and then accelerated more slowly to
the critical velocity. For such tests, additional
thrust is staged as required to bring about the low
acceleration desired.

In the coast phase, the test sled is decelerated
by the action of aerodynamic drag and track sliding
friction. The braking phase adds the water-braking
forces.

Accurate evaluation of all the acceleration and
deceleration forces is necessary in designing the test
vehicle to meet the test requirements, It is desirable,
of course, to accelerate the sledas rapidly as possible



to the required velocity so as to conserve range dis-
tance and to permit adeqguate time for observation
and measurement of the behavior of the test item
before the braking phase must be started.

The structural strength of the vehicle places
limits on the acceleration that can be applied.
Strengthening the carriage to withstand moreacceler-
ation increases its weight. The loads imposed on the
sled structure for any specified maximum velocity
are in almost direct proportion to the total weight of
the test vehicle. It is mandatory, therefore, that
weight be conserved not only to reduce these loads
but also to reduce the amount of thrust required to
achieve the desired velocity. It is perfectly possible
that the addition of more thrust can result in a lower
maximum velocity due to the weight of the additional
rocket motors,

Figure 5 shows a typical velocity-distance pro-
file of a flutter test in which a single staging of the
propulsion rockets was used. Figure6 showsa typical
three-stage velocity-distance profile of a flutter test
requiring a low-acceleration phase near the critical
velocity of the test item.

In this test, an additional coast phase was pro-
grammed between the first and second stages to

allow the final velocity to be controlled within very
close limits, It can be seen, therefore, that by the
careful selection of available rocket motors and by
the use of such techniques as coast periods, sled
velocity can be regulated in controlled increments
for flutter tests.

INSTRUMENTATION FOR FLUTTER TESTS

Photographic and electronic instrumentation is
used to observe and measure the motions of the test
item throughout the entire high-velocity portions of a
flutter test. Measurements on these records are made
to determine the velocity at which flutter occurred,
the frequency of the flutter, and the shape of the
flutter mode.

Electronic Instrumentaton

The fluiter frequency and the flutter mode
shape can be determined by the use of transducers
attached to a sufficient number of points on the test
item to measure the deflections of the surface, The
use of the accelerometer type of transducer, although
offering the advantage of direct measurement, com-
plicates the instrumentation system and the assess-
ment of the data.
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